
CafePie – A Visual Programming
Environment for CafeOBJ

Tohru Ogawa and Jiro Tanaka
Institute of Information Sciences and Electronics,

University of Tsukuba,
Tsukuba, Ibaraki 305-8573, Japan

Abstract

We have implemented a visual programming system CafePie. Pro-
gram editing and execution in CafePie are performed in one window.
All program editing operations are handled in a uniform manner.
We propose to customize the object views, which prescribe the

visible part of the program object. Data structures of the program
can be visualized as users like by using visual transformation rules.
These rules can also be edited using drag-and-drop operations. We
call these visualized objects “realistic” expression. The users can edit
and execute the program by using “realistic” expression. We have also
implemented the prototype on CafePie.

1 Introduction

A visual programming system (VPS) [1] visualizes structures of programs in
two or more dimensions using visual expressions such as graphics, pictures
and so on. Various research works have been performed on VPS, such as Pict
[2], HI-VISUAL [3] and PP [4].

In general, a visual style of programming is easier to understand for hu-
mans, especially for non-programmers or novice programmers. Moreover,
the style can be useful in the software specification area, such as component
based software [5, 6]. A tool qualifies as a visual programming if it is possible
to build an application without textual programming.

We have developed a system CafePie [7, 8, 9], which stands for Pictorial
Interactive Environment for CafeOBJ. CafeOBJ is an algebraic specification
language (ASL), a high-level declarative programming language. CafeOBJ

1

specification consists of module structures. Our system visualizes each mod-
ule. We use the direct-manipulation techniques for program editing. Most
of the editing operations are performed by using only a mouse. The same
visualization schema is used for both program editing and execution. Since
the program editing and execution are performed in one window, program
modifications are reflected directly in program execution.

2 The “CafePie” System

 Module Field New-Field

 Assistant Operation Part

 Text Input Part

 Working Part

Figure 1: A Snapshot of CafePie

Figure 1 shows a snapshot of CafePie.
“Assistant Operation Part” consists of buttons in the upper part of the
figure. This enables a user to load or save a file by the File button, set the
CafeOBJ server by the Options button, and view textual guides by the Help
button.
“Text Input Part” is in the next part of the former. The user can input or
modify the label of each editable icon by using this part.
“Working Part” is the main part of the figure. The user edits a CafeOBJ
program in this part. The “Module Field” in the “Working Part” shows
the current CafeOBJ module to edit. The left side of the “Module Field”
is the “New-Field,” which consists of essential icons such as sort, operator,
variable, and equation. This field is used to make a new icon in the “Module
Field.”

We developed CafePie and implemented it in Java. CafePie was developed
in Java Development Kit (JDKTM). and this is usually implemented as a Java
application. In Java application version, users can edit and execute programs

2

in the system. CafePie is also implemented as an applet on a Web browser.
The applet version is used only for program editing.

module SIMPLE-NAT {

[Zero NzNat < Nat]

signature {

op 0 : -> Zero

op s : Nat -> NzNat

op _+_ : Nat Nat -> Nat { comm, assoc }

}

axioms {

var N : Nat

var M : Nat

eq [0] : 0 + N = N .

eq [1] : N + s(M) = s(N + M) .

}

}

Figure 2: Program “simple-nat.mod”

The following functions have been implemented in CafePie:

• Input program objects by figures.
Users can input each basic object of an ASL language using an icon.
These icons can be edited by direct manipulation.

• Generate visual icons from the codes automatically.
Users can input a textual expression, and the system will generate icons
from the expression.

• Editing visual objects.
Visual expressions can be edited at any time. Users can program vi-
sually using this function while they edit or revise programs that have
already been generated from the textual programs of CafeOBJ.

• Program save/load.
Visually-edited programs can be saved to a file. Users load the file
when necessary. CafePie saves the visual expressions after it converts
them to CafeOBJ program expressions.

• Program execution.
A goal (term) represented by the visual icons can be executed. In this

3

case, CafePie is connected to the CafeOBJ interpreter. CafePie behaves
like a visual interface in the program execution.

For example, the file “simple-nat.mod”(Fig.2), which is a specification of
natural numbers (under addition) written in CafeOBJ, is loaded by clicking
on the File button. The program, visualized with pictorial objects, then
appears in the Module Field of the Working Part (as in Fig.1). The visualized
program can be edited by direct manipulation. If the edited program is
saved, a CafeOBJ program file and another textual file that contains layout
information are created.

2.1 Program Visualization in CafePie

“Visualization of program structure” means expressing the program structure
using pictorial or graphical objects. We visualize the program structures of
CafeOBJ by expressing the program elements with pictorial objects. Each
pictorial object is called an “Icon.” We have chosen the following primitive
elements for CafeOBJ: sort, operator, variable, and equation.

The visualization rules for each icon are presented below. Each icon has
a color and a shape as in the Table 1.

Table 1: Icons’ Colors and Shapes in CafePie
Icon Sort Term Operator Variable Equation Module

Color Green Light blue Orange White (label) Gray

Shape Rect. (Tree) Oval Oval (Balance) Field (Rect.)

Sort: CafePie uses a directed graph to depict the sort orders. The sorts
are represented in Fig.3 by green rectangular nodes as in the Table 1 (only
shaded rectangles are seen in the manuscript) and the orders are represented
by directed edges.

Figure 3: Sort Icon and Sort Relation Figure 4: Term Icon

4

Term: A term is formed with operators and variables. The structure
of a term is displayed as a tree. Fig.4 shows the tree structure of the
term “OP1(OP0,V:Sort).” A component of a term, i.e. an operator or a
variable, is represented by a node, and an arrow is drawn from the term to its
superterm to express the super-sub relationship between these components.
Operator and Variable: An operator is denoted by an operator symbol,
its sort “coarity,” and its attributes “arities.” An operator is represented
in Fig.5 by a light blue oval and has a label for the operator symbol as in
the Table 1. The labels of the arities are arranged at the bottom part of
the operator, and the label of the coarity is arranged at the top part of the
operator. Arrows are drawn from arities to operator and from operator to
coarity. A variable, which appears in Fig.6, is represented by an orange oval
like the Table 1, and the sort of the variable is represented at its lower part.

Figure 5: Operator Icon Figure 6: Variable Icon Figure 7: Equation Icon

Equation: CafePie is mainly concerned with the operational semantics
of CafeOBJ, so equations are always regarded as rewrite rules. A label is
arranged in the center top of the equation, as shown in Fig.7. The left side
is arranged on the bottom left side of the label, and the right side is on the
bottom right. Arrows from the left term to the label and from the label
to the right term are drawn to form a balanced shape to represent a term
rewriting rule as in the Table 1).
Module Field: A CafeOBJ program consists of modules. A module is
represented as a gray rectangle called a “field” as in the Table 1. The module
contains other primitive elements: sort, operator, variable, and equation. We
can edit these primitive elements.

2.2 Drag-and-Drop-based Program Editing

We use direct manipulation to implement program editing. Direct manipu-
lation is easy to learn, and the user can immediately recognize any mistakes.
Complex and obscure operations can cause unexpected consequences; simple
operations enable a smoother program editing.

All icon-editing operations are handled in a uniform manner, using a
drag-and-drop operation [10]. This drag-and-drop technique is well known
for its simplicity. For icon movement, the user moves the icon using the

5

drag-and-drop technique. If an icon already exists where the user wants to
drop the icon, the two icons will overlap. Overlapping two icons with the
drag-and-drop technique is important in the editing process. The process of
the drag-and-drop method consists of:

1. Selecting an icon,
2. Moving (or dragging) the selected icon to another icon, and
3. Overlapping (or dropping) the selected icon with another icon.

The target icon moves with the mouse cursor and remains visible through-
out the movement. The user moves the icon by dragging it, without losing
sight of what he is doing. We reexamined this technique to realize program
editing. Program editing operations in CafePie involve making/deleting a
relation between two sorts, adding/changing an arity of an operator, and
creating/adding a subterm on a variable. Table 2 shows these program edit-
ing operations. An event is invoked when an icon (source) is overlapped onto
another icon (target). After the event is invoked, the action corresponding
to the event is carried out. The program editing process is the repetition of
these elementary actions.

Table 2: Drag-and-Drop-based Program Operations in CafePie

Event Name Source Target Action

Make Sort-Relation Sort Sort Relate one sort to another (as supersort)

Delete Sort-Relation Sort Sort Delete the relation between two sorts

Add Arity Sort Operator Add an arity to an operator

Change Arity Sort Arity Change the arity to one that has the sort name

Change Coarity Operator Sort Change the coarity to one that has the sort name

Exchange Arities Arity Arity Exchange one arity for the other

Create Subterm Operator Variable Replace the variable with a new term

Add Subterm Term Variable Replace the variable with the (copied) term

For example, operator “s,” which appears in the sample code SIMPLE-
NAT, has an arity sort called “Nat” (“op s : Nat -> NzNat”). This op-
erator is created in several steps.

• First, an operator icon that has no arity (constant) is created by default.

• Next, the sort icon “Nat” which has already been defined is moved
toward the operator.

6

• Finally, these two icons are overlapped, the “Add Arity” event (in
Table 2) is carried out, and the arity sort called “Nat” is added to the
operator.

Another example is called “Create Subterm.” The left term of the equation
“1,” which appears in the SIMPLE-NAT, is “N:Nat + s(M:Nat).” Opera-
tors “ + ” and “s” are used to create this term.

• Suppose there is a variable that belongs to the sort “Nat.”

• Moving the operator “ + ” onto the variable changes the variable to
the term “V1:Nat + V2:Nat”.

• Similarly, moving the operator “s” onto the variable “V2” (of the term)
changes the variable “V2” to the term “V1:Nat + s(V2:Nat)”.

In this way, the drag-and-drop technique is applied to CafePie. All operations
of the program editing are handled in a uniform manner.

2.3 Program Execution in CafePie

CafePie enables the program execution by combining with CafeOBJ inter-
preter. In order to utilize the interpreter, CafePie must communicate with
“Cafemaster,” which is a network server for CafeOBJ. CafePie and the in-
terpreter are connected by cafemaster. (Cafemaster has two modes for com-
bining a client with the interpreter, i.e, the session mode and the interactive
mode. In the current implementation, CafePie accesses the interpreter in the
interactive mode.)

• Edit a goal term:
A user edits a term (goal) in the Module Field. It is called a goal and
is used to test the module SIMPLE-NAT. For example, we create the
goal “s(s(0)) + s(s(s(0)))” (the left side of Fig.8).

• Start the term rewriting:
A program consists of a module displayed in the Module Field. Each
module has a label. The label is drawn at the upper left of Module Field
(Fig.1). The user invokes evaluation (program execution) by moving
the term onto the label.

• Connect to the interpreter:
CafePie tries to connect to the interpreter running on a remote host
by using socket communication. If a connection is achieved, CafePie

7

Figure 8: A Goal Term for Program Execution

connects to the interpreter in an interactive mode (CafePie sends a
message “interactive” to the interpreter). Users can specify the in-
terpreter’s network address. They click on the Options button of the
Assistant Operation Part, and an options dialog appears on CafePie
(Fig.9). The IP address and the port of the CafeOBJ interpreter are
designated in the dialog. Thereafter, CafePie knows where the inter-
preter is.

URL: Users can designate an IP

address or URL as the location

of the interpreter.

PORT: Users can input the port

number of the interpreter.

Figure 9: Options Dialog of CafePie

• Send the module information to the interpreter:
After connecting to the interpreter, CafePie converts the module’s vi-
sual expression into a text-based CafeOBJ program and sends the pro-
gram to the interpreter. The information is comprised of a module
name, sorts, operations, variables and equations (Fig.2).

• Send the goal to the interpreter:
After sending the program, CafePie sends the goal term “s(s(0)) +

8

s(s(s(0)))” to the interpreter. CafePie orders the interpreter to start
the program execution (CafePie sends two messages, “set trace on”
and “red s(s(0)) + s(s(s(0))) .” to the interpreter, Fig.12).

• Receive the result from the interpreter:
The goal is rewritten repeatedly on the interpreter. CafePie receives the
term rewriting trace as a result after execution is completed (Fig.12).
The tracing result consists of terms that illustrate the process of reduc-
tions. The result is processed by CafePie and is shown in the visualized
form.

Figure 10: Dynamic Representation Figure 11: Static Representation

CafePie shows the terms in succession like an animated cartoon. This is
a dynamic representation and is suitable for checking the rewriting flow at
any time. Fig.10 shows the process of term rewriting when the goal term
is “s(s(0)) + s(s(s(0)))” of the module SIMPLE-NAT and the rewritten
term is “s(s(s(s(s(0)))))” (the right side of Fig.8). This is an effective
dynamic representation of the term rewriting process. After showing the last
term, CafePie presents the tracing diagram in the shape of an obi (an obi is
a Japanese broad sash tied over a kimono, Fig.11). This is a static display
and is suitable for checking one reduction process more closely.

3 Realistic Visualization

A term, which is a data structure of CafeOBJ, is visualized as tree structures
that consist of icons. Fig.13 shows a visualization of the term

“push(E3:Elt,push(E2:Elt,push(E1:Elt,push(E0:Elt,empty)))),”
by CafePie. The specification that produces this term is expressed as the
module STACK as shown in Fig.14.

9

SIMPLE-NAT> set trace on

SIMPLE-NAT> red s(s(0)) + s(s(s(0))) .

-- reduce in SIMPLE-NAT : s(s(0)) + s(s(s(0)))

1>[1] rule: eq N:Nat + s(M:Nat) = s(N:Nat + M:Nat)

{ N:Nat |-> s(s(0)), M:Nat |-> s(s(0)) }

1<[1] s(s(0)) + s(s(s(0))) --> s(s(s(0)) + s(s(0)))

1>[2] rule: eq N:Nat + s(M:Nat) = s(N:Nat + M:Nat)

{ N:Nat |-> s(s(0)), M:Nat |-> s(0) }

1<[2] s(s(0)) + s(s(0)) --> s(s(s(0)) + s(0))

1>[3] rule: eq N:Nat + s(M:Nat) = s(N:Nat + M:Nat)

{ N:Nat |-> s(s(0)), M:Nat |-> 0 }

1<[3] s(s(0)) + s(0) --> s(s(s(0)) + 0)

1>[4] rule: eq 0 + N:Nat = N:Nat

{ N:Nat |-> s(s(0)) }

1<[4] s(s(0)) + 0 --> s(s(0))

s(s(s(s(s(0))))) : NzNat

(0.010 sec for parse, 4 rewrites(0.070 sec), 10 match attempts)

SIMPLE-NAT>

Figure 12: An Execution Result of the CafeOBJ Interpreter

This visualization method is difficult for users to understand in an intu-
itive manner because they mentally visualize a STACK as building blocks,
not as a tree. A more “realistic” visualization scheme is desired. The “real-
istic” visualization means a framework to denote the meaning of the program
by its appearance. The users can guess the meaning easily by just looking
at the program. The appearance is called the “view” of the program. We
propose a method for customizing the view with “realistic” expressions.

3.1 Representation of Customized View

A term consists of operators and variables. We paid attention to “operators.”
We represent a correspondence of system-prepared view to user-defined view
for customizing the views of the operators.

For example, the STACK program of CafeOBJ has the operators “empty”
and “push.” By default, the expression of these operators has been prepared
by the system as in the left part of Fig.15 and Fig.16. If a user imagines
that the STACK is like building blocks, the operator “empty” is represented

10

Figure 13: Original Stack

module STACK {

protecting(NAT)

[NeStack < Stack]

signature {

op empty : -> Stack

op push : Nat Stack -> NeStack

op pop : NeStack -> Stack

op top : NeStack -> Nat

}

axioms {

var S : Stack

var N : Nat

eq pop(push(N, S)) = S .

eq top(push(N, S)) = N .

}

}

Figure 14: Program “stack.mod”

by a rectangle as shown in the right part of Fig.15. The operator “push” is
visualized like the right part of Fig.16. This figure shows that the rectangle
with “Nat” is arranged at the upper part of “Stack.”

Figure 15: Empty Operator Figure 16: Push Operator

If there is no response from the figure, users find it difficult to understand
the relationship before and after the customization. CafePie highlights a
visual object when users move a mouse cursor on the corresponding object.

3.2 Changing Term Representation by using Customized
View

After customizing the view of operators, users can change the view of terms
easily. Fig.13 shows a STACK represented as tree structure. In the case of
Fig.13, the view of the operator “push” is like the left part of Fig.16. To
change the view, users call pop-up menus by clicking a mouse and select

11

a “change-view” command. After the selection, the view is changed from
the left part of Fig.17 to the right part of Fig.17. The tree structure view
in Fig.13 is changed to the building blocks view as shown in the Fig.18.
Reversely, users return to the former view.

Figure 17: Changing the View Figure 18: Building Blocks

3.3 An Application of View Customization

Another visualization method can be applied to STACK instead of using
building blocks. The views of the operators “empty” and “push” can be re-
defined. The right hand side of Fig.19 shows the new rule of the operator
“empty.” This figure indicates “No Exit” because the exit door has broken
down. The right hand side of Fig.20 shows the new rule of the operator
“push.” This figure indicates that a person who has a face “Elt” is in the rear
of the “Stack.” Fig.21 shows a term according to the new visualization rules.

Figure 19: Empty Operator(2) Figure 20: Push Operator(2)

Each person has a different expression. No person can go forward because of
the broken door. Only the person who is at the end of the line can move. This
mechanism represents the STACK structure. In this visualization, STACK
represents a line of people. Programs can be expressed differently in this way
by defining different views.

12

Figure 21: Another Stack Visualization

3.4 View Customization by using Drag-and-Drop

Direct manipulation to figures is important in our system. We paid attention
to the drag-and-drop, and have implemented the customization of program
view on our system. The left part of Fig.16 is the view which the system has
given by default. Users edit the view on the left hand of Fig.16 by putting
figures together. The editable figures can be a rectangle, a rectangle with
rounded corners, an oval, user-defined figures and a variable. Users edit views
by using the movement of the figure, the expansion, and the reduction. They
drag the center of the figure for the movement, and drag the end of the figure
for the expansion (or the reduction).

CafePie displays relations, which are defined between the figures on the
user-defined view, according to their mouse-operations. Consider the editing
of the “push” view, for example. The “push” has two elements “Nat” and
“Stack” as shown in the left part of Fig.16. A user wants to edit the view
like the right part of Fig.16. The user has already prepared a rectangle in
the same way as the “empty” operation, like the right part of the Fig.15.

The left hand side of Fig.22: The user drags the figure “Nat” onto the
center of the rectangle, and drops the “Nat” inside the rectangle. When the
user moves the center of the “Nat” to the center of the rectangle, a horizontal
line “-” appears.
The middle left part of Fig.22: The user moves the “Nat” to the cen-
ter of the rectangle. When the centers of the figures overlap, a cross line “+”
is shown. The user drops the “Nat” on the position, and the centers of the
figures are aligned.
The middle right part of Fig.22: The user wants to arrange an element
“Stack” under the rectangle, and drags the “Stack” to the bottom of the
rectangle. When the centers of figure are aligned, the user drops the “Stack”
on the rectangle and the centers of the figures are aligned in the same position.

13

The right hand side of Fig.22: The user wants to set the width, and
expands/reduces the size of the “Stack” to adjust. The right and the left
parts of the figures are aligned by indicating vertical lines “|” in both sides
of the figures.

The user can recognize the feedback of the mouse-operations, and can
customize this view easily by using drag-and-drop.

Figure 22: Program Editing using Drag-and-Drop after View Changed

3.5 Arrangement Adjustment in View Customization

There are two approaches for view customization: top-down approach and
bottom-up approach. In CafePie, users customize each operator’s view, and
after that they edit a term by putting operators together. For example, users
edit the term shown in the Fig.18 by using three “push” and one “empty.”
In this way, we take the bottom-up approach in a view customization.

In the bottom-up approach, users sometimes make mistakes in customiza-
tion. For example, there is a gap in the STACK like the left hand side of
Fig.23. A user wants to remove the gap. First, the user clicks the right mouse
button on the term, and selects the “change-view” command to show the view
of the term as shown in the middle left of Fig.23. Next, the user moves the
“Stack,” and fixes the top of the “Stack” on the bottom of the rectangle
like the middle right of Fig.23. At last, CafePie arranges the STACK so that
there is no gap as shown in the right hand side of Fig.23.

Figure 23: Arrangement Adjustment in View Customization

14

3.6 Program Execution with the Customized View

We want to execute programs by using the customized view. The behavior
of a program is described by defining control structure. Equation is a control
structure in CafeOBJ, and it expresses a rewriting rule. A rewriting rule is
shown in the Fig.24. The left term of Fig.24 is written to the right term
of Fig.24. These expressions are used in visual programming system like
KidSim[11].

CafePie executes the programs through CafeOBJ interpreter. Fig.25
shows an execution result when the term

pop(push(E1,push(E3,push(E2,pop(pop(

push(E3,push(E4,push(E1,empty))))))))

of STACK is given as an initial term. The initial term is a target of an
execution, and it is called “goal.”

Figure 24: Rewriting Rule

Figure 25: An Execution with Customized View

The user prepares a goal by using the customized view as shown in the left
hand side of Fig.25. The goal has operator’s information, such as operator
symbol, its arity and its coarity. CafePie can convert into the text expression
of CafeOBJ interpreter from the customized goal.

CafePie starts the display after the result received from the interpreter.
When the goal is being customized, CafePie shows the goal by using the
customized expression. Execution proceeds as in Fig.25, and gets the term

push(E3,push(E2,push(E1,empty)))

as a result.

15

3.7 Setup for Animation

CafePie displays figures of the term rewriting trace statically in order to show
users the result of the program execution. CafePie also makes it possible to
show a program execution dynamically. In the case of the dynamic display,
the goal given by the users is rewritten in the same position. CafePie shows
snapshots of reduction in the fixed interval one after another. An animation
is finished when the goal is rewritten to the end.

The middle part of Fig.26, which is made up for showing snapshot smoothly,
is inserted between the left of Fig.26 and the right.

Figure 26: Setting up an Interpolation of Animation

In Fig.26, we see how the left part is rewritten into the right part. In
this case, this figure shows that the middle figure is displayed at half of the
whole timing. The program execution can be performed with the smoother
animation like in Fig.27.

Figure 27: An Expression of an Interpolated Animation

The horizontal line of Fig.26 shows a display-timing of an interpolated
figure. If users drag the middle figure towards the left, this is displayed at an
earlier timing. If users drag it to the opposite direction, this is displayed at a
later timing. Users can remove the figure by dropping it anywhere except for
the equation figure. Users can copy the left (or the right) term of the equation
by moving it toward the center. Users edit the figure to interpolate by moving

16

a part of this figure, and so on. Users can obtain a smoother animation by
increasing the number of interpolated figures between the snapshots.

4 Related Works

Various systems have been proposed through which users can watch and an-
alyze the term-rewriting system (TRS). ReDux[12] is a workbench for TRS
realized by a textual interface. ReDux has various interfaces with completion
algorithms. They came up with various concepts in the text interface. How-
ever, users cannot manipulate the terms intuitively. TERSE[13] is a visual
support environment for TRS. The system can visually show the process of
term rewriting. The system supports the environment for program execu-
tion, but does not support program editing. CafePie visually supports not
only program execution but also program editing. Users often understand
the program through the execution and want to subsequently re-edit the
program. Our main point is that CafePie can edit and execute the program
visually. CafePie is the first system that shows TRS execution dynamically.
Viry presents some preliminary ideas towards a user interface for completion
and its integration within programming environments[14].

SDL[15], G-LOTOS[16, 17] and Petri Nets[18] are graphics-based speci-
fication languages. SDL is a specification language with both graphical and
character-based syntaxes for defining interacting extended finite state ma-
chines, and is used to specify discrete interactive systems such as industrial
process control, traffic control, and telecommunication systems. G-LOTOS,
which has two-dimensional constructions, enables LOTOS to express the
specification diagrammatically. Petri Nets is applied to the modeling and
analysis of computer architecture problems, and has a graphical and formal
syntaxes.

In addition, various kinds of visual programming languages have been
proposed. Form/3[19] is a declarative, form-based, language that follows
the spreadsheet paradigm. ChemTrains[20] is a rule-based language in which
both the condition and action of each rule are specified by pictures. Visulan[21]
is a visual programming language based on bit-map rewriting. Bit-map as a
program expression is described in the order set of the pattern replacement
rule. Figures are the editing target of our system, though bit-maps are made
the target of Visulan. Changing only a program view is difficult because bit-
map itself shows a program model. GELO[22] is a system where users can
customize the visualization of the data structure. GELO does not describe
how to edit a program view by using direct manipulation.

In the field of visualization of the data structure, algorithm animation is

17

useful. Algorithm animation is a technique for showing a change in the data
structure effectively. Algorithm animation system, such as Pavane[23] and
Zeus[24], can specify a detailed animation toward one algorithm. Not only
a view of the program but also a program itself may be edited. Our system
expresses programs by using simple animation. Our system takes the middle
position of visual language and algorithm animation.

5 Summary

We have developed a visual programming system CafePie for CafeOBJ. Pro-
gram structure is expressed by the icon visually. As for the execution of the
program by term rewriting system as well, it is visualized by using the same
icon.

Users can manipulate these icons intuitively by using drag-and-drop. We
proposed the customization technique of program view by using drag-and-
drop. Users can customize the visual part of the program easily by using
this technique. We have shown the program execution of the customized
expression by implementing this technique on CafePie.

References

[1] B.A. Myers. Taxonomies of Visual Programming and Programming
Visualization. Journal of Visual Languages and Computing, 1(1):97–
123, 1990.

[2] E. Glinert and S. Tanimoto. PICT: An Interactive Graphical Program-
ming Environment. IEEE Computer, 17(11):7–25, 1984.

[3] M. Hirakawa, M. Tanaka, and T. Ichikawa. An Iconic Programming
System, HI-VISUAL. IEEE Transaction on Software Engineering,
16(10):1178–1184, 1990.

[4] J. Tanaka. PP : Visual Programming System For Parallel Logic Pro-
gramming Language GHC. Parallel and Distributied Computing and
Networks ’97, pages 188–193, August 11-13 1997. Singapore.

[5] M. P. Stovsky and B. W. Weide. Building Interprocess Communication
Models Using Stile. In E. P. Glinert, editor, Visual Programming En-
vironments: Paradigms and Systems, pages 566–574. IEEE Computer
Society Press, Los Alamitos, 1990.

18

[6] D. C. Smith and J. Susser. A Component Architecture for Personal
Computer Software. In B. A. Myers, editor, Languages for Developing
User Interfaces, pages 31–56. Jones and Bartlett Publishers, Boston,
1992.

[7] T. Ogawa and J. Tanaka. Drag and Drop based Visual Programming
Environment for Algebraic Specification Language. In 15th Conference
Proceedings Japan Society for Software Science and Technology(JSSST-
98), pages 165–168, 1998. (in Japanese).

[8] T. Ogawa and J. Tanaka. Realistic Program Visualization in CafePie.
In Proceedings of World Conference on Integrated Design and Process
Technology (IDPT’99), 1999. (to appear).

[9] T. Ogawa and J. Tanaka. CafePie: A Visual Programming System for
CafeOBJ. In Cafe: An Approach to Industrial Strength Algebraic Formal
Methods, pages 145–160. Elsevier Science, 2000.

[10] A. Wagner, P.Curran, and R. O’Brien. Drag Me, Drop Me, Treat Me
Like an Object. In Proceedings of CHI’95: Human Factors in Computing
Systems, pages 525–530, 1995.

[11] Alan Cypher and D.C. Smith. KidSim: End User Programming of Sim-
ulations. In Proceedings of ACM CHI’95 Conference on Human Factors
in Computing Systems, pages 27–34, 1995. Denver, CO.

[12] R. Bundgen. Reduce the Redex → ReDuX. In Rewriting Techniques
and Applications, LNCS 690, pages 446–450. Springer, 1993.

[13] N. Kawaguchi, T. Sakabe, and Y. Inagaki. TERSE: TErm Rewriting
Support Environment. In Workshop on ML and its Application, pages
91–100, florida, june 1994. ACM SIGPLAN.

[14] P. Viry. A user-interface for Knuth-Bendix completion. In 4th Workshop
on User Interfaces for Theorem Provers (UITP’98), July 1998.

[15] R. Saracco, J. Smith, and R. Reed. Telecommunications Systems Engi-
neering using SDL. North-Holland, Elsevier Science Publishers, Ams-
terdam, 1989.

[16] E. Najm (ed.). G-LOTOS: DAM1 to ISO8807 on graphical representa-
tion for LOTOS. Technical report, ISO/IEC JTC 1 / SC 21 N. 4871,
1992.

19

[17] T.Bolognesi and D.Latella. Techniques for the formal definition of the
G-LOTOS syntax. In Procceeing of the 1987 IEEE Workshop on Visual
Languages (VL’89), Roma, 1987.

[18] J. L. Peterson. Petri Net Theory and The Modeling of Systems. Prentice-
Hall, 1981.

[19] M. M. Burnett and A. L. Ambler. A Declarative Approach to Event-
handling in Visual Programming Languages. In Proceedings of the 1992
IEEE Workshop Visual Languages (VL’92), pages 34–40, Seattle, Wash-
ington, September 1992.

[20] B. Bell and C. Lewis. ChemTrains: A Language for Creating Behaving
Pictures. In Proceedings of the 1993 IEEE Symposium Visual Languages
(VL’93), pages 188–195, Bergen, Norway, August 1993.

[21] K. Yamamoto. Visulan: A Visual programming Language for Self-
Changing Bitmap. In Proceedings of International Conference on Visual
Information Systems, pages 88–96, Melborune, 1996.

[22] S. P. Reiss, S. Meyers, and C. Duby. Using gelo to visualize software sys-
tems. In Proc. of the 2nd Annual Symposium on User Interface Software
and Tech nology (UIST’89), pages 149–157, Williamsburg, VA, 1989.

[23] K. C. Cox and G.-C. Roman. Visualizing Concurrent Computations.
In Proceedings of 1991 IEEE Workshop on Visual Languages (VL’91),
pages 18–24, 1991.

[24] M. H. Brown. Zeus: A System for Algorithm Animation and Multi-View
Editing. In Proceedings of 1991 IEEE Workshop on Visual Languages
(VL’91), pages 4–9, October 1991.

20

