
Feature Article: An On-Line Web Visualization System with Filtering and Clustering Graph Layout

11

An On-Line Web Visualization System with
Filtering and Clustering Graph Layout

Wei Lai, Xiaodi Huang, Ronald Wibowo, and Jiro Tanaka

Abstract—A Web graph refers to the graph that is used to represent

relationships between Web pages in cyberspace, where a node represents a
URL and an edge indicates a link between two URLs. A Web graph is a
very huge graph as growing with cyberspace. To use it for Web navigation,
only a small part of the Web graph is displayed each time according to a
user’s navigation focus. The graph layout has always been a challenge for
visualizing systems. In this paper, we present a visualization system of an
online Web graph, together with the methods for clustering and filtering
large graphs. In this system, a Web crawler process is used to get on-line
information of the Web graph. Filtering and clustering processes reduce
the graph complexities on visualization. In particular, the filtering
removes those unimportant nodes while the clustering groups a set of
highly connected nodes and edges into an abstract node. The visualization
process incorporates graph drawing algorithms, layout adjustment
methods, as well as filtering and clustering methods in order to decide
which part of the Web graph should be displayed and how to display it
based on the user’s focus in navigation.

Index Terms— Graph visualization, Filtering, Clustering, Web graph

I. INTRODUCTION
HE amount of information now available through the

World Wide Web (WWW) has grown explosively. An
increasing number of tools are available to assist users to
manage and access information on the WWW, such as
Netscape and Internet Explorer. The key requirement for a Web
browser is to show the details for the users’ focused
information and to facilitate navigation within the whole
information hyperspace. It is, however, impossible to display
this huge and growing hyperspace for users to get its whole
structure in helping navigation. The navigation approach used
in most Web browsers is simply from one page to another page.
Although current Web browsers can provide bookmarks and
history lists in a linear way, they cannot show relationships
between the URLs.

Some researchers have proposed “site mapping” methods [3,
12, 15] in an attempt to find an effective way of constructing
the structured geometrical map for a Web site (i.e. a local map).
However, this map can only guide users through a very limited
region of cyberspace, and does not help the users in their

overall journey through the cyberspace.

Manuscript received September 15 , 2004.
Wei Lai and Ronald Wibowo are with School of Information Technology,

Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122,
Australia (wlai@swin.edu.au).

Xiaodi Huang is with Department of Mathematics and Computing, The
University of Southern Queensland, Australia.

Jiro Tanaka is with Institute of Information Sciences and Electronics,
University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.

Other attempts use a graph for the WWW navigation. The
whole cyberspace of the WWW is regarded as a Web graph [6,
9, 10]. In the Web graph, a node represents a Web page’s URL
and an edge represents a link between two URLs. This
approach is placed an emphasis on navigation, but ignores
achievement of a better local view for the site mapping. The
graph layout by this approach shows all possible hyperlinks and
makes the layout look so messy. This makes a site-mapping
view sometimes unclear to users.

The primary difficulty for creating an auto-generated
sitemap lies in that the number of the links can be quite big, or
even huge. The presentation of these links will become messy
and hard to read, so that the visualization will become useless.

This paper presents an on-line Web visualization system by
using filtering and clustering to reduce visual complexities of
the Web graph. The system includes the processes of Web
crawler, filtering and clustering, and visualization. The Web
crawler process is used to get on-line information of the Web
graph. Filtering and clustering processes reduce the graph
complexities on visualization. The filtering is used to remove
those unimportant nodes, and the clustering is used to make a
set of nodes and edges (a sub-graph) to an abstract node. The
visualization process uses graph drawing algorithms and layout
adjustment algorithms for graph layout. We begin with the
description of our system in the following section, and then
present the filtering and clustering methods in Sections 3 and 4.
A case study is provided in Section 5, followed by the
conclusion in Section 6.

II. THE ON-LINE WEB VISUALIZATION SYSTEM
The on-line Web visualization system with filtering and

clustering graph layout (we call it the FCG system) supports a
user to use a graph to navigate the cyberspace. The Web graph
is a very huge graph as the cyberspace keeps growing. During
the Web navigation, each time only a small part of the Web
graph is displayed. We call it a sub-Web graph which is formed
based on the user’s focus in navigation.

Figure 1 shows the FCG system in action. According to the
user’s choice of a node in navigation, the relevant Web page is
shown up.

The user can navigate the Web graph by selecting a node.
This selected node is called the focused node. The system can
smoothly add some new nodes which are closed to the focused
node and remove some other nodes which are far away from the

T

IEEE Intelligent Informatics Bulletin June 2005 Vol.5 No.1

12 Feature Article: Wei Lai, Xiaodi Huang, Ronald Wibowo, and Jiro Tanaka

focused node with the filtering and clustering processes based
on the size of a display window.

Fig. 1. Design of the FCG System

The design of the FCG system is as follows. A Web crawler

extracts on-line URLs relationships from the cyberspace and
constructs the Web graph represented in a text file format. This
file is processed by the filtering and clustering and then goes to
the visualization process for graph layout. The user can interact
with the system to adjust the filtering, clustering, and
visualization.

The FCG system has three modules. Each module is treated
differently and can be implemented individually. The first
module, called the Web crawler, is to obtain the hyperlinks
among Web sites as mentioned above. The crawler crawls from
a given input URL and stop when the defined depth is reached.
The Web crawler then saves the URLs list into a text file. The
second module is about the filtering/clustering process, while
the third module includes the visualization process. The overall
process is detailed in Figure 2.

In this system, we integrate the techniques of the Web
crawler [2, 4, 13], graph drawing algorithms [1], layout
adjustment methods [14], and the filtering and clustering
methods.

Fig. 2. Design of the FCG System

Each module can run independently with the given input,

and it also produces an output. The dashed line in Figure 2
implies that the Web graph is changed on the basis of the results
of the Web crawler. In other words, the new Web pages
collected by the Web crawler can immediately be reflected in
the updated Web graph.

As mentioned before, the Web crawler in Figure 2 is
employed to extract the links from a given URL Web site, with
a specified depth of exploration. The detailed process of this
Web crawler can be illustrated in Figure 3.

Fig.3. Web crawler process

Note that a dashed line in Figure 3 between “URL file” and

Extracting
Webpage titles

Webpage title File

Extracting
HyperLinks

URL file

Input a URL and depth

Web Crawler

Filtering/Clustering

Clustered URL file

Visualization

Web graph display

URL text file

June 2005 Vol.5 No.1 IEEE Intelligent Informatics Bulletin

Feature Article: An On-Line Web Visualization System with Filtering and Clustering Graph Layout

13

“E

III. FILTERING
To enhance the re ut, some filter

m

large graph is automatically generated from an
in

he FCG system is to display a Web graph for
us

xtracting Webpage titles” means that the process will
continue until reaching the given exploration depth. For
example, if the given depth is one then the process will only run
once. If the given depth is three, then the process will be carried
out three times with the immediately previously crawled URLs
as new starting points of the exploration.

adability of the layo
echanisms are applied to the Web graph. The filter is to

reduce the size of the graph by removing weak links, defined as
those edges with connected nodes whose degrees are less than a
predefined number. The use of the filter makes the Web graph
layout easier to read due to reduction of the number of nodes
and edges.

Usually, a
formation source. This may unavoidably lead to the creation

of “noise” information. For example, the use of a Web crawler
program easily extracts some unwanted image files, together
with html Web pages, from a Web site when constructing a
Web graph. In addition, Filtering can suppress unimportant
nodes and their related edges to highlight those important nodes
by using an adjustable threshold to control appearances of the
nodes.

The purpose of t
ers to explore. In the following example of a graph in Figure

5 (this graph is a sub-Web graph), the links to CSS files and to
image files are therefore considered to be unimportant links.
Figure 6 shows an example by applying the filtering to remove
these links.

Fig.5. A graph obtained by the Web crawler process

Fig.6. The graph obtained after the filtering

A filtering algorithm [8] is applied directly the Web graph.
This algorithm is to calculate the node rank values for every
nodes based on their connection degrees with other nodes,
geodesic distances with other nodes, and the “intermediary”
important role between the various other nodes. The range of
the node rank value is between 0 and 1. In practice, with an
appropriate threshold, some “noise” nodes or less important
nodes are removed.

IV. CLUSTERING
In the implementation, the filtering and the clustering as a

whole module starts by accepting an input text file, produced
by the Web crawler, and ends with outputting a file containing
a list of clustered URLs. The clustering procedure is shown in
Figure 7.

Input file

Finding initial
seed nodes Web graph

Graph matrix

Dissimilarity matrix

Clustered Graph

K-means algorithm

Clustered URLs File

Fig. 7. Clustering process

IEEE Intelligent Informatics Bulletin June 2005 Vol.5 No.1

14 Feature Article: Wei Lai, Xiaodi Huang, Ronald Wibowo, and Jiro Tanaka

At the start of the process, a Web graph is constructed from
the URL file. This graph is then represented as an edge-by-node
matrix, where each column indicates a node encoded by its
connecting edges, and each row represents an edge
characterized by its related nodes. An example is shown in
Figure 8. Note that after filtering, the graph is still represented
by this kind of matrix.

The purpose of clustering a graph is to find relatively highly
connected sub-graphs in a graph. With the matrix as the
representation of the graph, a similarity matrix can be derived
as to measure the degree of connection between two nodes.

The algorithm for clustering the elements in the matrix [7]
for a given graph G can be summarized briefly as follows:

 Input: G (V, E)
 Output: A clustered graph

• Construct the edge-by-node incident matrix R.
• Calculate similarity values of neighbour nodes pair

according to the formula (1).
• Find the shortest paths between non-neighbour node

pairs by using the Dijkstra’s algorithm.
• Construct the node similarity matrix according to the

formula (2)
• Apply the k-means algorithm to the dissimilarity matrix

constructed by the formula (3)

 Node 1 2 3 4 5 6 7

10
9
8
7
6
5
4
3
2
1

1100000
1010000
0110000
0101000
0000101
0001010
0001001
0001100
0000110
0000011

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=R Edge

Fig. 8. An example of a graph and its edge by node matrix

j
T

ij
T
ji

T
i

j
T

i
ji rrrrrr

rr
rrsim

−+
=),(

))(())(())((
))((

),(
ReeRReeRReeR

ReeR
rrsim

T
ji

TT
jj

TT
ii

T

T
ji

T

ji −+
= (1)

where i and j = 1, …, n, and ei (or ej) denotes the i-th (or j-th)
canonical vector of dimension e, i.e., e = (1,1,…,1)T.

This expression is used to calculate the similarity values
between two neighbour nodes. In the case of non-neighbour
node, the following formula is employed instead.

⎩
⎨
⎧

=

≠Π
= ∈

 P if
P if rrsim

rrsim nmPrrP
ji

nm

φ
φ

0
)},({max

),(),(' (2)

where P is a set of pairs of nodes in the shortest path between
nodes i and j, namely)},(,),,{(jkmiP L= . Such several
possible shortest paths consist of a set 'P

For example, the symmetric similarity matrix of Figure 8 is
shown in Figure 9. The formula (2) is in fact a metric of
measure the degree of two nodes in a graph, which satisfies
fundamental properties: non-negativity, symmetry and ranging
within [0, 1].

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000.1250.0333.0042.0007.0007.0007.0
000.1253.0167.0028.0028.0028.0

000.1042.0007.0007.0007.0
000.1167.0167.0167.0

000.1200.0200.0
000.1200.0

000.1

S

 1
Figure 9: The node similarity matrix of the graph in Figure 8.

From similarity matrix S, we can easily obtain the

dissimilarity matrix D by the following formula (3), which will
be used as an input of the k-means algorithm.

[] SD nn −= ×1 (3)
The clustering process produces a text file containing many

lines, with each line describing the links between two URLs,
and between two clustered groups.

If we apply the clustering process to a graph several times,
the multi-level abstraction of clustered graphs will be
generated. Figure 10 shows the result of applying the clustering
to the graph in Figure 8.

Fig. 10. An example of applying the clustering

 The time requirements for calculation of the similarity

matrix is O(e + n log n) while the running time for the k-means
is O(rkn), where e is the number of edges, n is the number of
nodes r is the number of iteration, and k is the number of
desired cluster. Thus the total time complexities will be O (e +
n log n + rkn).

2

3

4 6

5

7

1 4
6 8

7
5 9

2 3 10

1_4 5_7

June 2005 Vol.5 No.1 IEEE Intelligent Informatics Bulletin

V. A CASE STUDY
For the purposes of this case study, we restrict our interest to

visually navigate http://www.swin.edu.au (Swinburne
university Website) with two levels of exploration depth using
the FCG system. Specifically, our goal is to evaluate the FCG
system in producing visualizations that can be used properly.
We investigate the drawing, representation of a Web graph
produced by the FCG system.

That is, we focus on three issues:
• The visualization of Swinburne university Website as

a Web graph.
• Discussion of the drawings and representations, in

terms of their ability to navigate the Web graph.
• The measurement of performance of the FCG.

A. The Experiments

To investigate the FCG system in producing Web graph

visualization, we tested the FCG system to view Swinburne
Website with two levels of exploration depth.

The results of this case study are presented in the following
two sections. First, we present a picture gallery of different
layouts produced by the FCG system. Second, we present the
discussion and performance measures of the layouts shown in
the picture gallery.

B. Picture Gallery

 Fig.11. The Swinburne Web site using FCG

Fig.12. Expanded node labeled as http://www.swin.edu.au/cwis/events/

Fig. 13. Filter applied to the expanded node

Fig.14. Expanded nodes

IEEE Intelligent Informatics Bulletin June 2005 Vol.5 No.1

Feature Article: An On-Line Web Visualization System with Filtering and Clustering Graph Layout

15

16 Feature Article: Wei Lai, Xiaodi Huang, Ronald Wibowo, and Jiro Tanaka

\

 Fig.15. Node navigation menu

Fig.16. Navigation menu for expanded node

C. Discussion

Figure 11 shows the visualization result generated by FCG

for the Website of Swinburne University with two levels of
exploration depth. In Figure 11 graph drawing algorithms are
applied to the Web graph, which assign the positions for all
nodes to ensure that there are no overlapping nodes in the
graph.

The running time taken by FCG to render the Web graph in
Figure 11 is 1.3 seconds in Pentium 4 computer with 1.8GHz
clock and 512 RAM. The drawing process using modified
spring algorithm [5], took with the spring animation off. The
modified spring algorithm only applied in fifty iterations, so if
the animation to position the node is turned on, it took half
second per iteration (the system timer in FCG to call the spring
algorithm is per half second). The force-scan algorithm [10],
used to remove the overlapping nodes, took 0.17 seconds to
perform on ten nodes.

The Web crawler and clustering/filtering process took longer
time than the layout process. The reason for this is that it
depends on the Internet speed. The clustering process depends

heavily on the number of URLs, taking 2.4 seconds to cluster
178 URLs in this case.

The ten nodes in the Web graph in Figure 11 can be shown in
more detail as shown in Figure 12 by expanding the nodes. In
Figure 12 the node http://www.swin.edu.au/cwis/events/ is
expanded from the corresponding node in Figure 11, and graph
drawing algorithms are applied on the expanded node window.
Without animation, it took less then 1 second to apply the
modified spring algorithm to the expanded node, and 0.22
seconds to apply the force-scan algorithm to the expanded node
and root level nodes. The node expanded creates a new
window, so it is easy to see the nodes inside the expanded node.
When the window is closed, the Web graph in Figure 12 is
returned back to Web graph in Figure 11.

Figure 13 shows the resulting graph when applied filtering to
the Web graph in Figure 12. The weak links and unimportant
link filters have been removed. The node labels in Figure 13 are
visible only for the active window, in which the expanded node
resides.

An example of the Web graph with more than one expanded
node is illustrated in Figure 14 Note that the filtering rules have
been applied to the graphs shown in Figures 13 and 14. In the
presence of more than one expanded nodes, the Web graph
tends to grow too large to be fitted in the screen. When this
problem occurs, expanded nodes that are not focused and
positioned outside will be closed.

The FCG system provides the navigation menu for a focus
node, as shown in Figure 15. There are three menus: first,
“Open in Browser”, which opens the URL page of the
corresponding node using the system default browser; second
“Expand” , which expands the node into the detailed nodes,
similar to the node http://www.swin.edu.au/cwis/events/ in
Figure 12, and the last menu called “Extract this URL” , which
extracts all other URLs connected to the current URL in order
to expand the Web graph. When the latter menu is clicked, the
entire visualization process described before will be performed
again. For the updated graph two windows will be generated,
along with the first window displaying the original graph
layout, and the second showing the newly extracted URLs.

Figure 16 shows the navigation menu that is available for the
expanded node when the focused expanded node is
right-clicked. There are three menus items. The first menu item
displays the focused expanded node name (a URL). The second
menu item, “Apply Spring”, applies the modified spring
algorithm to lay out the expanded node that includes all nodes
inside it. The other nodes will, however, not be affected. The
second menu item, “Apply force-scan”, enforces the force scan
algorithm to adjust the layout of the expanded node and its
parent nodes. Although there are three expanded nodes in
Figure 16, for example, the force-scan algorithm is restricted to
the nodes inside the window titled http://www.swin.edu.au, and
their root level nodes, if the “Apply force-scan” menu item is
chosen for the expanded node. The last menu item “close”
closes the expanded node.

June 2005 Vol.5 No.1 IEEE Intelligent Informatics Bulletin

http://www.swin.edu.au/

VI. CONCLUSION
In this paper, we have presented a system for visualization of

Web sites, along with the algorithm and approach for clustering
and filtering graphs. As opposed to existing approaches that
suffer from the limitation of the messy layouts of large graphs,
our approach was designed to overcome this difficulty in a
stepwise and refinement way by using clustering and filtering
graphs. A prototype called FCG has been implemented to
demonstrate the performance of our approaches with a case
study. The future work will include the usability test of this
system.

REFERENCES
[1] G. D. Battista, P. Eades, R. Tamassia, and T. Tollis, Graph drawing:

algorithms for the visualization of graphs, Prentice Hall, 1999.
[2] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual Web

Search Engine,” In Proceedings of the Seventh International World Wide
Web Conference, Brisbane, Australia, April 1998.

[3] Y. Chen and E. Koutsofios, “WebCiao: a Website visualisation and
tracking system,” In Proceedings of WebNet 97 Conference, 1997.

[4] J. Cho, H. Garcia-Molina, and L. Page, “Efficient crawling through URL
ordering,” In Proceedings of the Seventh International World Wide Web
Conference, pages 161–172, April 1998.

[5] P. Eades, “A heuristic for graph drawing,” Congressus Numerantium,
42:149-1601984.

[6] M. Huang, P. Eades, and J. Wang, “On-line animated visualization of
huge graphs using a modified spring algorithm,” Journal of Visual
Languages and Computing, vol. 9, no.6, pp. 623-645,1998

[7] X. Huang and W. Lai, “Automatic abstraction of graphs based on node
similarity for graph visualization,” In Proceedings of The Fifteenth
International Conference on Software Engineering and Knowledge
Engineering, pp167-173, San Francisco Bay, July 2003.

[8] X. Huang and W. Lai, “NodeRank: a new structure based approach to
information filtering,” In Proceedings of the International Conference on
Internet Computing, pp167-173, Las Vegas, USA. 2003.

[9] W. Lai, M. Huang, Y. Zhang, and M. Toleman, “Web graph displays by
defining visible and invisible subsets,” In Proceedings of AusWeb99 - the
Fifth Australian Web Conference, pp. 207-218, Ballina, NSW, April
1999.

[10] W. Lai, M. Huang, and J. Tanaka, “Fitting Web graphs in a display area
with no overlaps for Web navigation,” In Proceedings of the International
Conference on Internet Computing, pp. 601-607, June, 2002.

[11] W. Lai and P. Eades, “Removing edge-node intersections in drawings of
graphs,” Information Processing Letters, vol.81, pp105-110, 2002.

[12] Y. S. Maarek and I. Z. B. Shaul, “WebCutter: a system for dynamic and
tailorable site mapping,” In Proceedings of the Sixth International World
Wide Web Conference, pp. 713-722, 1997.

[13] R. C. Miller and K. Bharat, “SPHINX: A framework for creating personal,
site-specific Web crawlers,” In Proceedings of the Seventh International
World Wide Web Conference, pp.119–130, April 1998.

[14] K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout adjustment and the
mental map,” Journal of Visual Languages and Computing, No. 6, pp.
183- 210

[15] C. Pilgrim and Y. Leung, “Applying bifocal displays to enhance WWW
navigation,” In Proceedings of the Second Australian World Wide Web
Conference, 1996.

IEEE Intelligent Informatics Bulletin June 2005 Vol.5 No.1

Feature Article: An On-Line Web Visualization System with Filtering and Clustering Graph Layout

17

