

Automatic Code Generation From

UML Class and Statechart Diagrams

Graduate School of Systems and Information Engineering

University of Tsukuba

November 2005

Iftikhar Azim Niaz

Automatic Code Generation From

UML Class and Statechart Diagrams

Iftikhar Azim Niaz

November 2005

A dissertation submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Engineering

Computer Science

Doctoral Program in Engineering

University of Tsukuba, Japan

Dedicated to
my parents,

wife Fariha and
our children, Rameen and Sarmad

for their love, encouragement and support

 1

Abstract

The emergence of Unified Modeling Language (UML) as a standard for modeling

systems has encouraged the use of automated software tools that facilitate the

development process from analysis through coding. In UML, the static structure of

classes in a system is represented by a class diagram while the dynamic behavior

of the classes is represented by a set of statechart diagrams. To facilitate the

software development process, it would be ideal to have tools that automatically

generate or help to generate executable code from the models.

 In the present study, an effort has been made to find methods to automatically

generate executable code from the UML class and statechart diagrams. An object-

oriented approach has been proposed to generate executable implementation code

from UML class and statechart diagrams in an object-oriented programming

language. The generated code contains the structural as well as behavioral code for

all the classes of the application model. A new approach, collaborator object, has

been proposed to implement the UML statechart diagram. States are represented as

objects and events as their methods. The hierarchical and concurrent substates are

implemented by using the concept of object composition and delegation.

 An automatic code generating system, JCode, has also been developed that

implements the proposed method and automatically generates executable Java code

from the specifications of the UML class and statechart diagrams. A comparison

with Rhapsody and OCode shows that the code generated by JCode is much more

compact, efficient and readable than that of Rhapsody and OCode.

 2

Contents

List of Figures 5

List of Tables 8

1 Introduction 9

 1.1 Unified Modeling Language (UML) 9

 1.2 Motivation . 10

 1.3 Goals and Objectives . 11

 1.4 Organization . 11

2 Approaches To Implement Statechart Diagram 13

 2.1 Switch Statement . 15

 2.2 Helper Object . 17

 2.3 Collaborator Object . 21

3 Combining Class Diagrams and Statechart Diagrams 28

 3.1 The Dishwasher System . 28

 3.2 Combining Class and Statechart Diagrams 33

 3.2.1 Class Diagram Module 36

 3.2.2 Statechart Diagram Module 37

 3.2.3 Code Generation Module 39

 3

4 Automatic Code Generating System: JCode 43

 4.1 Main Module . 45

 4.2 CDAnalyzer . 46

 4.3 CDTransformer . 48

 4.4 SCAnalyzer . 49

 4.5 SCTransformer . 52

 4.6 Code Generator . 55

5 Implementing Other Features of Statechart Diagram 61

 5.1 Fork and Join . 61

 5.1.1 Implementing Fork and Join 63

 5.2 History State . 64

 5.2.1 Implementing History 66

6 Comparison with Rhapsody and OCode 68

 6.1 Watch Application . 69

 6.2 Microwave System . 71

 6.3 Dishwasher System . . 73

 6.4 Air Conditioner System . 74

 6.5 Cassette Player System . 75

 6.6 Test Device Application . 76

 6.7 Comparison Results . 78

 6.7.1 Compact Code . 78

 6.7.2 Efficient Code . 80

 4

7 Related Work 84

 7.1 Implementing Class Diagram 84

 7.2 Implementing Statechart with Switch Statement 85

 7.3 Implementing Statechart with Design Pattern 85

 7.4 Other Approaches to Implement Statechart 89

8 Conclusions

92

 Acknowledgements

94

 Bibliography

96

 Author Publications List

99

 5

List of Figures

2.1 Statechart for air conditioner . 15

2.2 Code generated by switch statement approach 16

2.3 Code generated by helper object approach 19

2.4 Implementation structure of helper object approach 21

2.5 Code generated by collaborator object approach 24

2.6 Implementation structure of collaborator object approach 26

3.1 Class diagram for the dishwasher system 29

3.2 Statechart of Dishwasher class . 30

3.3 Statechart of Tank class . 31

3.4 Statechart of Jet class . 32

3.5 Statechart of Heater class . 32

3.6 Overview of the JCode system . 35

3.7 Class diagram specifications of dishwasher system in DSL format . . 36

3.8 Statechart DSL filenames for classes of dishwasher system 37

3.9 Statechart specifications of Dishwasher class in DSL format 37

3.10 Part of the updated state table for statechart of Jet class 38

3.11 Part of the updated state table for statechart of Dishwasher class . . . 38

3.12 Part of the updated class table for dishwasher system 39

 6

3.13 Generated code for the application class of dishwasher system 40

3.14 Part of the generated code for the Dishwasher class 42

4.1 Class diagram for the air conditioner system 44

4.2 Statechart of AirCon class . 44

4.3 Structure of the JCode system . 45

4.4 Class diagram specifications of air conditioner system in DSL format 46

4.5 Part of the ClassInfo table for air conditioner system 48

4.6 Statechart DSL filenames for classes of air conditioner system 49

4.7 Statechart specifications of AirCon class in DSL format 50

4.8 Part of the state table for statechart of AirCon class 52

4.9 Part of the updated state table for statechart of AirCon class 54

4.10 Part of the updated ClassInfo table for air conditioner system 54

4.11 Generated code for the application class of air conditioner system . . 55

4.12 Generated code for the DisplayInterface class 56

4.13 Part of the generated code for the AirCon class 60

5.1 Statechart for Test class containing Fork and Join 62

5.2 Part of the generated code for the Test class 64

5.3 Statechart for CPlayer class containing history state 65

5.4 Part of the generated code for the CPlayer class 67

6.1 Class diagram for the watch application 69

6.2 Statechart of Watch class containing hierarchical states 70

6.3 Class diagram for the microwave system 72

 7

6.4 Statechart of Oven class containing concurrent states 72

 8

List of Tables

1 UML to Java transformation for statechart 14

2 UML to Java transformation for class diagram 14

3 UML to Java transformation for JCode 41

4 Compactness of generated code for watch application 70

5 Efficiency of generated code for watch application 71

6 Compactness of generated code for microwave system 73

7 Efficiency of generated code for microwave system 73

8 Compactness of generated code for dishwasher system 74

9 Efficiency of generated code for dishwasher system 74

10 Compactness of generated code for air conditioner system 75

11 Efficiency of generated code for air conditioner system 75

12 Compactness of generated code for cassette player system 76

13 Efficiency of generated code for cassette player system 76

14 Compactness of generated code for test device application 77

15 Efficiency of generated code for test device application 77

16 Compactness of code generated by OCode and JCode 79

17 Efficiency of generated code with different design choices 82

 9

Chapter 1

Introduction

 Object-oriented software development matured significantly during the past ten

years. The Unified Modeling Language (UML) [1, 2, 3] is generally accepted as

the de facto standard modeling notation for the analysis and design of the object-

oriented software systems. UML is a graphical language for specifying the analysis

and design of object-oriented software systems [2].

1.1 Unified Modeling Language (UML)

 The emergence of UML [1, 2, 3] as a standard for modeling systems has

encouraged the use of automated software tools [12, 14, 15, 19, 24] that facilitate

the development process from analysis through coding. UML provides several

diagram types that can be used to view and model the software system from

different perspectives and/or at different levels of abstraction. UML defines nine

types of graphical diagrams namely, class diagram, object diagram, use case

diagram, statechart diagram, activity diagram, sequence diagram, collaboration

diagram, component diagram and deployment diagram. The two diagrams which

become important in the design phase are class diagram and statechart diagram.

 10

 A class diagram is a graphic view of the static structural model. It shows a set

of classes, interfaces and their relationships. The main focus is on the description

of the classes. Class diagrams are important for constructing systems through

forward engineering.

 In UML based object-oriented design, behavioral modeling aims at describing

the behavior of objects using state machines. A state machine is a behavior that

specifies the sequence of states an object goes through during its lifetime in

response to events [2]. The UML statechart diagram visualizes a state machine. It

contains states, transitions, events and actions. Statechart diagram addresses the

dynamic view of a system. It is especially important in modeling the behavior of a

class and emphasizes the event-ordered behavior of an object, which is particularly

useful in modeling reactive systems. It focuses on changing states of a class driven

by events. The semantics and notations used in UML statecharts mainly follow

Harel’s statecharts [4] with extensions to make them object-oriented [1].

1.2 Motivation

 A model-system gap exists primarily due to the different levels of abstraction.

Since visual modeling is getting more and more popular [1, 5, 6, 7], the automatic

generation of the program code on the basis of high-level models is an important

issue [42]. Benefits of high-level modeling and analysis are significantly enhanced

if code can be generated automatically from a model such that the correspondence

between the model and code is precisely understood. Object-oriented methods help

developers analyze and understand a system, but the Achilles' heel of analysis and

design methods has been the transition to code. Most of the object-oriented

methodologies [5, 6, 7, 8, 9, 10] describe in sufficient detail the steps to be

followed during the analysis and design phase, but fail to describe how the analysis

 11

and design models of a system shall be converted into implementation code. A big

problem in the development of a system through object-oriented methodologies is

that, even after having created good models, it is difficult for a large fraction of

software developers to convert the design models into executable code. It would be

ideal to have tools that support the developer and automatically generate or help to

generate executable code from the models.

1.3 Goals and Objectives

 The final goal of this research is to automatically generate implementation code

from the UML class and statechart diagrams. The general objectives are:

1. To find an approach to generate implementation code from UML class

and statechart diagram in an object-oriented programming language

such as Java [30].

2. To implement the proposed approach and develop a system for

automatic Java code generation from UML class and statechart

diagrams. Our code generation approach and tool will help in bridging

the gap between the design and development phase and will support

the developers in the software development process.

1.4 Organization

 The thesis is organized as follows. Chapter 2 provides background about

various approaches to implement statecharts. Our proposed approach, Collaborator

Object, for implementing UML statechart diagram is also described here. Chapter

3 discusses the implementation of the UML class and statechart diagram with our

 12

code generation approach. In Chapter 4 the automatic code generating system

JCode, which implements our proposed approach, is described in detail. Chapter 5

describes other features of JCode system that includes implementation of fork, join

and history states. In Chapter 6, code generated by JCode is compared with

Rhapsody and OCode. In Chapter 7, an overview of the related work is presented.

Finally, in Chapter 8, the main results of our research are summarized.

 13

Chapter 2

Approaches to Implement Statechart

Diagram

 UML is a modeling language, which consists of semantics and graphical

notation. For every element of its graphical notation there is a specification that

provides a textual statement of syntax and semantics. Implementing the semantics

correctly is a challenging task, as the programming languages do not directly

support them. The UML statechart diagrams include many concepts that are not

present in most popular object-oriented programming languages, like C++ or Java,

e.g. events, states, history states etc. States can be represented as scalar variables or

they can be represented as objects. Events can be represented as objects or as

methods.

 Ran [17] examined techniques to model state as classes. Sane and Campbell

[18] proposed that states could be represented as classes and events as operations.

Some model elements, like history states, can be implemented in many different

ways. This means there is not a one-to-one mapping between a statechart and its

implementation. Table 1 summarizes the transformation rules for statecharts.

 14

Table 1 UML to Java transformation for statechart

UML One Approach [19] Alternate Approach [23]

State Scalar variable Object

Event Object Method

Action Simple statement Method

Entry / Exit Actions Objects Method

 Most of the class diagram concepts have a one-to-one mapping with the

programming language concepts so the class diagram implementation is relatively

straightforward. Class diagrams can be implemented directly in a programming

language supported concepts like classes and objects, composition and inheritance.

The transformation rules for class diagram are summarized in Table 2.

Table 2 UML to Java transformation for class diagram

UML Java [30]

Class Class

Interface Interface

Attribute Attribute

Properties on attributes Attribute modifiers

Operation Method

Properties on operations Method modifiers
Realization between classes and
interfaces Implements

Generalization between classes and
interfaces Extends

Association between classes Reference attributes in both classes

 15

 We will now discuss some of the approaches to implement statechart diagram.

We will use the statechart for an air conditioner, as shown in Figure 2.1, to show

the code generated by different approaches.

Figure 2.1 Statechart for air conditioner

2.1 Switch Statement

 The most common and earliest technique to technique to implement statechart

is the switch statement. Based on the current active state, it performs a jump to the

code for processing the event. States are represented as data values. A single scalar

variable, called a state variable, stores the current active state. One switch

statement is used for each event. The state variable is used as a discriminator in the

switch statement inside each event method of the context class [34]. The correct

case is selected on the value of the state variable. Each case clause in the switch

statement can implement the various actions and activities for the specific state. All

the behavior of the statechart is put in one single class. This technique works well

for classical “flat” state machines. The nested states are implemented via flat states

[34]. The code generated by this approach for the air conditioner statechart is

shown in Figure 2.2.

 16

Figure 2.2 Code generated by switch statement approach

 AirCon is the context class and all the behavior of the statechart is put in this

context class. The states are represented as scalar constants of type int. The state is

a scalar variable and holds the current active state. The on_subState holds the

current active substate of the On composite state. The state and on_subState are

initialized to default states in the constructor of the context class. The events are

implemented as methods. Transition searching is performed using a switch

statement. Each case clause of the switch state implements the state-specific

behavior and contains the event action, entry/exit actions and the next state. The

actions are implemented as simple statements. The substates of the On composite

state consume the events targeted to the composite state or its substate. The entry

class AirCon { // context class
 public static final int off = 1;
 public static final int on = 2;
 public static final int cooler = 3;
 public static final int heater = 4;
 public int state; // state variable
 public int on_subState;
AirCon() { //constructor
 state = off;
 on_subState = cooler;
 }
public void modeBut() { // event method
 switch (state) {
 case off :
 break;
 case cooler :
 setHeater; // action
 // exit actions
 on_subState = Heater;
 state = on_subState;
 // entry actions
 break;
 case heater :
 setCooler; // action
 // exit actions
 on_subState = Cooler;
 state = on_subState;
 // entry actions
 break;
 default :
 break;
 }

public void powerBut() { // event method
 switch (state) {
 case off :
 setOn; // action
 // exit actions
 state = on_subState;
 // entry actions
 break;
 case cooler :
 setOff; // action
 // exit actions
 state = off;
 // entry actions
 break;
 case heater :
 setOff; // action
 // exit actions
 state = off;
 // entry actions
 break;
 default :
 break;
 }
…………
}

 17

and exit actions of a state have to be duplicated in every event method. In the

powerBut event method, the code is duplicated for the cooler state and the heater

state, as one of these states will be active when the composite state is active.

 Switch statement provides a simple and straightforward implementation of the

statechart concepts. The structure of the statechart is hard coded into a single class.

There is a lot of code duplication and reuse of code is very difficult. Manual

coding of entry/exit actions and event actions is, however, cumbersome, mainly

because code pertaining to one state becomes distributed and repeated in many

places. This makes it difficult to modify and maintain when the topology of state

machine changes. It does not provide explicit means for reflecting the transition

structure, state hierarchy and entry/exit actions associated to states. Implementing

and maintaining the code generated by following this approach is error-prone and

labor intensive, but usable in automatic code generators where the code

maintenance is substituted by forward engineering. I-Logix’s Rhapsody [19]

follows an approach similar to this approach to implement UML statechart diagram.

2.2 Helper Object

 In [23], the concept of a helper object is introduced, which is an object-oriented

replacement of the switch statement. It puts each case clause in a separate object.

The helper object handles all the state-specific requests forwarded to it by the

multi-state domain object (context). The behavior of the multi-state domain object

is split into context and a state. The context responds differently to each external

message depending upon its current state. Helper object puts the behavior

associated with a particular state into one object. The helper object encapsulates all

the state-specific behavior of the context. The helper object represents the current

state of the context object and implements the behavior specific to the current state.

 18

The context object delegates all external messages to its helper object and the

helper objects responds to the message on behalf of the domain object. The state

object is created temporarily. When the state of the domain object changes, a new

helper object, implementing the behavior specific to the new state, replaces the old

one. The source state is responsible for the change of state of the helper object.

 Events become methods in the context class. The context has a method for each

event of the statechart. Instead of implementing the event method, the context

object delegates all requests (events) for processing to the current state object. The

transition searching is performed using polymorphism. Separating behavior into

disparate objects makes sense when the separation takes advantage of

polymorphism. Polymorphism allows two objects to be treated identically, even

though the objects implement these methods in quite different ways. The transition

to a different state means replacement of the current state object by another state

object. The actions become methods in the context class.

 An abstract state class is used for defining the interface for encapsulating the

behavior associated with a particular state of the context. The abstract state class

declares an interface common to all state classes and its purpose is to make all the

state classes able to accept every event of the statechart. The interface for internal

events and entry /exit actions are also declared in this abstract class.

 The state object contains state-specific attributes and implementation for state-

dependent behavior. Each state in the statechart diagram becomes a class and is

derived from the abstract state class. All the behavior associated with a particular

state is put in this state class. Introducing separate objects for different states

makes the transitions more explicit.

 The code generated by this approach for the air conditioner statechart is shown

in Figure 2.3.

 19

Figure 2.3 Code generated by helper object approach

 The AirCon class contains the helper object ac, which maintains the current

state. AirCon also maintains two references history and lastActive for maintaining

the history state of the composite state On. The helper object and history references

are initialized in the constructor of the AirCon class. The events, powerBut and

modeBut, become methods in the AirCon class. The bodies of these methods

contain only one statement, which delegates the event for processing to the helper

object. All the actions become methods in the context class. An abstract state class

AirConState, is defined for declaring an interface. The top-level states Off and On

are derived from the AirConState class. The event methods in these state classes

public class AirCon { // context
 public AirConState ac; // helper object
 public int history;
 public int lastActive;
AirCon() { //constructor
 ac = new Off();
 history = 0;
 lastActive = 0; }
// delegates events to helper object
public void powerBut() { ac.powerBut(); }
public void modeBut() { ac.modeBut(); }
// All actions become methods
public void setOn() {………}
public void setOff() {………}
………}
public class AirConState {
 public void entry() {};
 public void exit() {};
 public void powerBut() {};
 public void modeBut() {}; }
public class Off extends AirConState { // state
 public void powerBut() { AirCon.setOn();
 AirCon.ac.exit();
 if (AirCon.history == 0) { // history first time
 AirCon.ac = new Cooler();
 AirCon.history = 1; }
 else { // recalling history state
 switch(AirCon.lastActive) {
 case 0 : AirCon.ac = new Cooler();break;
 case 1 : AirCon.ac = new Heater();break; }}
 AirCon.ac.entry(); }
 }

class On extends AirConState { // composite

public void entry() { }
public void exit() { }

public void powerBut() { // outgoing transition
 AirCon.setOff;
 AirCon.ac.exit();
 AirCon.ac = new Off();
 AirCon.ac.entry(); }
}
// state hierarchy is implemented by Inheritance
// substates are subclasses from composite class
class Cooler extends On { // substate
 public void modeBut() {
 AirCon.setHeater;
 AirCon.ac.exit();
 AirCon.ac = new Heater();
 AirCon.ac.entry();
 AirCon.lastActive = 1;
 }
}

class Heater extends On { // substate
 public void modeBut() {
 AirCon.setCooler;
 AirCon.ac.exit();
 AirCon.ac = new Cooler();
 AirCon.lastActive = 0;
 AirCon.ac.entry();
 }
}

 20

implement the behavior. The state objects define the transitions. On transition, first

of all the event action is executed followed by the exit actions of the current state.

The new object for the next state is created and its reference is stored in the helper

object. Then the entry action of the new state is executed. The implementation of

history state is not encapsulated in the composite state On but rather it is

distributed among state objects and the domain object AirCon.

 The state hierarchy is implemented by using inheritance. The statechart

structure becomes the class hierarchy. The substates, Cooler and Heater, become

subclasses of the superstate class On. The super class implements the behavior

specific to the super state and the subclasses implement the behavior specific to the

substates. The reference lastActive, which represents the most recent active

substate, is updated each time the substate is exited. The super class never becomes

active, rather the current active substate handles the transitions for the super state

class as they inherit all the methods of the superstate class. The problem with this

approach is that it generates code only for the domain class with which the

statechart is attached. OCode [24, 25] used a similar approach to implement Object

Modeling Technique (OMT) [6, 31, 32, 33] dynamic model.

 Figure 2.4 shows the implementation structure of the helper object approach for

the air conditioner example of Figure 2.1. The context class AirCon has a one way

association with the abstract state class AirConState. The association is navigable

from the AirCon class only. The AirCon class has one reference attribute ac to

access the attributes and methods of AirConState class or its child classes.

AirConState has a generalization relationship with the two top level states Off and

On. The top level states inherit all the properties and methods of the parent class

AirConState. The composite state On has a generalization relationship with the

substates Cooler and Heater. The Heater and Cooler substate classes are derived

from the parent class On.

 21

Figure 2.4 Implementation structure of helper object approach

 The helper object approach is the object-oriented implementation of the UML

statechart diagram. It is very a very attractive and natural implementation of the

statechart concepts. It eliminates the code redundancy and produces reusable code.

The problem with this approach is that it has instantiation cost for every transition

as it uses temporary state objects. On every transition, a new state object is created

which replaces the current state in the helper object.

2.3 Collaborator Object

 Although helper object provides a better solution than switch statement for

implementing statechart diagram, we believe that some more improvements can be

made by using different object-oriented techniques. Our objective is to support the

developer in the development phase.

 Similar to helper object, in our approach for implementing statechart, the

behavior of the context class is split into context and a state. The context object,

the instance of the main class with which the client communicates, aggregates a

 22

collaborator object that is used to represent the behavior in one of its states. The

context object defines the interface to clients. The collaborator object encapsulates

all the state-specific behavior of the context. The context object maintains a

collaborator object that points to an instance of current active state object. We have

used more persistent and permanent objects. The context object maintains

references of all the state objects and they are created once in the constructor of the

context object. The instantiation cost is paid only once. On transition, the context

class is responsible for setting the new state by changing the state reference in the

collaborator object. The states are represented as objects and implement state-

specific behavior.

 The events are represented as methods. The context object delegates all events

to the collaborator object for processing. State transitions are accomplished by

changing the collaborator object with the reference of next state. No new object is

created. Transition searching is performed using polymorphism. The actions in the

transitions of a state machine perform operations on data in the system. We

consider action as a message that performs operations on the data of the context

object so each action of the statechart becomes a method in the context class.

 An abstract state class is defined for defining the interface to state classes. The

name of the abstract state class is derived from the context class name and State is

added to it. Each state in the statechart diagram becomes a class and is derived

from the abstract state class. The name of the state becomes the name of the class.

All the behavior associated with a particular state is put in this state class. The state

object contains state-specific attributes and implementation for state-dependent

behavior. Each transition from a state becomes a method in the corresponding state

class in order to provide a uniform and convenient way of invoking some services

on the context object. Internal transitions and entry/exit actions are owned by their

containing states so they are implemented as methods in the corresponding state

class. If-then statement is used to check whether the guard condition is satisfied.

 23

All the state-specific code resides in one class. The logic that determines the state

transitions is partitioned between the state classes. Methods in the state do not need

conditional analysis and have no concern for processing in other states.

Encapsulating each state transition in a class elevates the idea of an execution state

to full object status. Introducing separate objects for different states makes the

transitions more explicit. That imposes structure on the code and makes its intent

clear.

 The composite states containing hierarchical or concurrent substates are

implemented by using the concept of object composition and delegation. Object

composition is defined dynamically at runtime through objects acquiring

references to other objects. New functionality is obtained by composing objects to

get more complex functionality. Object composition keeps each class encapsulated

and there are fewer dependencies. Any object can be replaced at runtime by

another as long as it has the same type. Delegation is a way of making object

composition powerful for reuse. The main advantage of delegation is that it makes

it easy to compose behavior at runtime and to change the way objects are

composed. The behavior of the composite state is split into composite state and its

substate. The composite state aggregates a collaborator object that is used to

represent the behavior in one of its substates. The composite state object maintains

a collaborator object that points to an instance of current active state substate.

Events that have its substate as target are delegated to collaborator object for

processing. The composite state class is responsible for changing the next substate

in its collaborator object. Substates implements behavior specific to substates and

are derived from a common interface class (each method in this interface

corresponds to an event) that declares handler functions for the events received by

the composite state class. The code generated by our approach for the air

conditioner statechart is shown in Figure 2.5.

 24

Figure 2.5 Code generated by collaborator object approach

 The context class, AirCon, maintains the collaborator object state, which points

to the current active state. AirCon maintains references for all the state objects, Off,

On, Heater and Cooler. They are created once in the constructor of AirCon. The

state object is also initialized to default state in the constructor. The powerBut and

modeBut events become methods in the context class. AirCon object delegates the

event for processing to the state object. All the actions, setOn, setOff, setHeater

and setCooler, become methods in the context class AirCon.

 AirConState is the abstract state class. It maintains a reference airCon to access

the context class. The Off and On state classes are derived from the AirConState

class AirCon { // context class
 public AirConState state; // collaborator object
 public Off offState;
 public On onState;
 public Cooler coolerState;
 public Heater heaterState;
AirCon() { //constructor
 offState = new Off(this);
 onState = new On(this);
 coolerState = new Cooler(this,onState);
 heaterState = new Heater(this,onState);
 state = offState // setting default state }
 // setting the new state
public void setState(AirConState st) {
 state = st;
 state.entry(); }
public void powerBut() { state.powerBut(); }
public void modeBut() { state.modeBut(); }
 // All actions become methods
public void setOn() {………}
public void setOff() {……….}
………}
 class AirConState { // abstract state class
 public AirCon airCon; // context reference
 public void entry() {};
 public void exit() {};
 public void powerBut() {};
 public void modeBut() {}; }
class Off extends AirConState { // state class
 public void powerBut() {
 airCon.setOn(); exit();
 airCon.setState(airCon.onState); } }

class On extends AirConState { // composite state
private AbsOnState subState;//collaborator object
private AbsOnState onHistory;
private int hist =0;
public void entry() {
 if (hist > 0) // implementing history
 subState = onHistory;
 else {subState = airCon.coolerState; hist = 1;}
 subState.entry(); }
public void exit() { onHistory = subState; }
public void powerBut() { // outgoing transition
 airCon.setOff();
 subState.exit(); exit();
 airCon.setState(airCon.offState); }
 // delegating substate events
public void modeBut() { subState.modeBut(); }
 // setting the next substate
public void setSub(AbsOnState sub) {
 subState = sub; subState.entry(); } …….}
class AbsOnState { // abstract composite state
 public AirCon m_context;
 public On s_context;
/* Empty declarations for entry(), exit() and all
events methods of subclasses of AbsOnState*/ }
class Cooler extends AbsOnState { // substate
 public void modeBut() { m_context.setHeater();
 exit();
 s_context.setSub(m_context.heaterState); }}
class Heater extends AbsOnState {
 public void modeBut() { m_context.setCooler();
 exit();
 s_context.setSub(m_context.coolerState); }}

 25

class. The state classes implements the state-specific behavior. In our approach, the

context object defines the transitions. On handling the transitions, the current state

object first executes the associated action with the transition followed by the exit

action of the current state and then calls the setState() method of the context object

AirCon to set the new state. In the setState() method, no new object is created, the

state object is simply updated with the reference of the new state. The entry action

of the new state is also executed in the setState() method. The state object is

responsible for specifying the successor state. Decentralizing the transition logic in

this way makes it easy to modify or extend the logic by defining new state

subclasses.

 The state hierarchy is implemented by object composition and delegation. The

composite state object, On, maintains two references with private visibility,

collaborator object Substate and onHistory, for maintaining the current active

substate and the history state. The onHistory reference is used to set the active

substate in the entry() method of the composite state On, whenever the composite

becomes active. The onHistory is adjusted to the last active substate in the exit()

method of the composite state. In this way the implementation of history state is

encapsulated in the composite state. The composite state remains in control all the

time. If the target of the incoming transition is a substate, then it will delegate the

event to the collaborator object. The composite state On, is responsible for defining

the transitions in the setSub() method. The substate specifies the successor substate.

An abstract composite class AbsOnState is defined which contains empty

declarations for entry/exit actions and all the event methods, which are specific to

the substates of the On composite state. The substates Cooler and Heater are

derived from abstract composite state class AbsOnState. The substates implement

the event methods targeted to the substates.

 26

Figure 2.6 Implementation structure of collaborator object approach

 Figure 2.6 shows the implementation structure of our approach for the air

conditioner statechart as shown in Figure 2.1. The context class AirCon has a

bidirectional association with the abstract state class AirConState. The object of

one class can navigate the object of the other class. The AirCon class has the

reference state object to access the event methods of the state object. The

AirConState contains a reference airCon to the context object. The state objects,

Off and On, inherit this reference to access the methods of the AirCon context

object. The AirConState has a generalization relationship with the two top level

state Off and On. The Off and On states become the child classes of the parent class

AirConState and inherit all the attributes and methods of the parent class. The

abstract composite state class AbsOnState has associations with AirCon and On. It

contains two references, m_context and s_context, one to access the main context

class AirCon for executing the event actions and the other one to access the super

context class On, for changing the next substate. The association between context

AirCon class and the AbsOnState is in one direction and is navigable from the

 27

AirConState class only. The association between AbsOnState and On class is

bidirectional and both classes contain a reference attribute to access the objects of

the other class. The AbsOnState has a generalization relationship with the substates

Cooler and Heater. The substates classes are derived from the parent class

AbsOnState.

 The collaborator object approach for implementing statechart diagram provides

better encapsulation and produces more reusable code.

 28

Chapter 3

Combining Class Diagram And

Statechart Diagrams

 A system consists of multiple statechart diagrams, each of which shows the

behavior of a particular class of objects contained in the class diagram of the

system. In this chapter, we demonstrate our code generation approach from the

UML class and statechart diagrams.

3.1 The Dishwasher System

 We present an example of the Dishwasher system to show our code generation

approach. Figure 3.1 shows the static structure of the Dishwasher system. The

Dishwasher system consists of five classes, namely Dishwasher, Jet, Tank and

Heater. The Dishwasher class has one way aggregation relationships with Jet,

Tank and Heater classes. Aggregation represents a whole/part relationship. The

Dishwasher represents the “whole” and Jet, Tank and Heater represent the “parts”.

The Dishwasher class has four attributes namely, cycle, rinseTime, washTime and

dryTime of type int.

 29

Figure 3.1 Class diagram for the dishwasher system

 The dynamic behavior of the Dishwasher class is specified in the statechart as

shown in Figure 3.2. It has two top-level states PowerOff and PowerOn. These

states are activated alternatively whenever a powerBut event occurs. A transition

from the solid circle to a state shows that the state is the default state. Initially, the

Dishwasher is in the default state PowerOff, where it accepts the powerBut event.

The dishwasher reacts on such an event by switching from the PowerOff state to

the PowerOn state.

 The PowerOn state is a composite state with two concurrent regions Active and

Mode. These regions become active at the same time whenever the PowerOn state

gets activated. Each of the concurrent regions has a number of sequential substates.

Only one of the sequential substates becomes active at a given time. Whenever

PowerOn state becomes active, DoorClosed in the Active region and Normal state

in the Mode region become active at the same time as they are the default states in

each of the corresponding concurrent regions of the PowerOn composite state.

 30

Figure 3.2 Statechart of Dishwasher class

 While in PowerOn state, on close or open event the Dishwasher switches to the

next sequential state in the Active region. The DoorClosed substate is a composite

hierarchical state containing Stop, Filling, Rinsing, Washing, Draining and Drying

sequential substates. When the DoorClosed state is active, exactly one of its

 31

sequential substates is also active at the same time. On open event the dishwasher

switches to DoorOpen state in the Active region. On close event, it switches into

the history state of the DoorClosed state and recalls the last active substate of the

DoorClosed state. A statechart describes the dynamic aspects of an object whose

current behavior depends on its past. A statechart in effect specifies the legal

ordering of states an object goes through its lifetime. History state allows a

composite state that contains sequential substates to remember the last substates

that was active in it prior to the transition from the composite state. Similarly, on

intMode, normMode or quickMode event, the Dishwasher switches to the next

sequential substate in the Mode region.

 The dynamic behavior of the Tank class is specified in the statechart as shown

in Figure 3.3. It has four top-level states Empty, Fill, Full and Drain. These states

are activated alternatively whenever a tankFill, tankFull, tankDrain, or tankEmpty

event occurs. Initially, the Tank is in the default state Empty, where it accepts the

tankFill event. The Tank reacts on such an event by switching from the Empty state

to the Fill state.

Figure 3.3 Statechart of Tank class

 32

 The dynamic behavior of the Jet class is specified on the statechart as shown in

Figure 3.4. It has two top-level states Idle and Running. Initially, the Jet is in the

default state Idle, where it accepts the jetOn event. The Jet reacts on such an event

by switching from the Idle state to the Running state. The Running state is a

composite hierarchical state containing two sequential substate Spraying and

Pulsing. Only one of the sequential substates becomes active at a given time.

Whenever Running state becomes active, Spraying state becomes active at the

same time as it is the default state of the composite Running state. While in

Running state, on jetPulse event, the tank switches to the next sequential substate

Pulsing. On jetOff event the Jet switches back to Idle state.

Figure 3.4 Statechart of Jet class

Figure 3.5 Statechart of Heater class

 33

 The dynamic behavior of the Heater class is specified in the statechart as shown

in Figure 3.5. It has two top-level states Off and On. Initially, the Heater is in the

default state Off, where it accepts the heaterOn event. The heater reacts on such an

event by switching from the Off state to the On state. On heaterOff event it

switches back to the Off state.

3.2 Combining Class and Statechart Diagrams

 Many object-oriented CASE tools (ArgoUML [11], Poseidon [12], Metamill

[13], objectiF [14], MagicDraw [15], Objecteering [16] etc.) generate header files

from the class diagrams. Code generation from only the class diagram generates a

limited skeleton code consisting of class attributes and method signatures. It

provides the framework code for the object structure of a system. The generated

code is incomplete and cannot be executed. Based on the partial models of object

dynamics, developers then explicitly program object behavior and communications

in the target language to make it executable.

 Code generation from statecharts diagrams only generates the executable

behavior code for a particular object. It generates code for one class only with

which the statechart is attached. The developer has to explicitly join this code with

other parts of the application to make the executable code for the entire application

model. In [26] and [27], the code generated by our approach is only for the class

with which the statechart is associated and the code generation for the class

diagrams containing other classes of the application model is not considered. The

generated code is incomplete.

 In [28] and the present study, we have used the behavioral approach which is

different from the approach of [26] and [27]. In this approach, we have combined

 34

class diagrams together with the statechart diagrams for complete code generation

of the entire application model. Combining class and statechart diagrams broadens

the application field and covers a wider area by including static as well as

behavioral information. We can now handle more complex problems containing

more than one statechart and more complex statechart diagrams. Our approach

generates code for the structural model as well as the behavioral code.

 In our approach, an application class is generated in a separate file. All

instances of classes in the class diagram are defined in the application class. The

object instances are created once in the constructor of the application class. It also

contains the main() method, which serves as an entry point for the application. The

initialization code is also generated in the main() method. Separate files, containing

the implementation code for each class appearing in the class diagram, are

generated. If there is no statechart attached with the class then the generated code

contains only the class attributes, attributes for association with other classes and

the methods signatures. The behavioral aspects of a class are specified in the

attached statechart. If a class has an associated statechart then the generated code

contains the behavior implementation for the context class in addition to the class

attributes, association attributes and method signatures. In the same file the code

for the state classes of the statechart is also generated according to the collaborator

object approach, as described in chapter 2. We have put the structural and

behavioral code for a class in one Java file. The generated code is executable and

contains all the information given in the application model.

 35

Figure 3.6 Overview of the JCode system

 The JCode system is developed, which automatically generates the executable

Java [30] code from the specifications of the UML class and statechart diagrams

using our code generation approach. Figure 3.6 shows the overview of the JCode

system. The input to the system is the class and statechart diagrams specifications

in Design Schema List Language (DSL) [29]. DSL is a specification language to

represent class and statechart diagram in an understandable text format and to

facilitate data exchanges among tools and members of the group. The output of the

system is the executable Java [30] code.

 We will demonstrate our code generation approach by generating code for the

dishwasher system as shown in Figure 3.1. The JCode system works in three major

modules, namely class diagram module, statechart module and the code generation

module. Following is the brief description of each of the modules.

Class Diagram

Module

Statechart Module

Class and State
Tables Java

 code
Class Diagram

DSL file

Code
Generation

Statechart
DSL file name State Tables

Statechart
DSL file

 36

3.2.1 Class Diagram Module

 The first input to the JCode system is the specifications of class diagram in DSL

format. Figure 3.7 shows the class diagram of dishwasher system in DSL format.

Figure 3.7 Class diagram specifications of dishwasher system in DSL format

 The class diagram module reads the specifications of the class diagram, given in

DSL format, and identifies various components of the class diagram and stores

them in a table of classes. Nodes in DSL represent the classes. All the information

about a class which includes name of the class, its attributes and method headers is

stored. Arcs in DSL represent the relationships between classes. All the

information about the relationship is also stored in the table. The class diagram

module then processes the class table and extracts the statechart DSL filenames

and passes this information to the statechart module to process the associated

statechart diagrams. Figure 3.8 shows the statechart DSL filenames for classes of

dishwasher system passed to the statechart module by the class diagram module.

OOD (g1)[nodes{n1,n2,n3,n4},arcs{a1,a2,a3},oodAttr(name:DishwasherAppl)];

OODN(n1)[loc(200:10),size(90:110),oodnAttr(name:Dishwasher,(access+,dateType:int,name:
cycle), (access+,dateType:int,name:rinseTime), (access+,dateType:int, name:washTime),
(access+,dateType:int,name:drytime),interface:Dishwasher.dsl)];
OODN(n2)[loc(10:40),size(90:60),oodnAttr(name:Heater,interface: Heater.dsl)];
OODN(n3)[loc(400:40),size(90:60),oodnAttr(name:Jet,interface: Jet.dsl)];
OODN(n4)[loc(200:180),size(90:60),oodnAttr(name:Tank,interface: Tank.dsl)];

OODA(a1)[from(n2,side:RIGHT,off:30),to(n1,side:LEFT,off:55),oodaAttr(arcType:aggr,forwa
rdMult:1, reverseMult:0)];
OODA(a2)[from(n3,side:LEFT,off:40),to(n1,side:RIGHT,off:65), oodaAttr(arcType: aggr,
forwardMult:1, reverseMult:0)];
OODA(a3)[from(n4,side:TOP,off:45),to(n1,side:BOTTOM,off:45), oodaAttr(arcType : aggr,
forwardMult:1, reverseMult:0)];

 37

Class ID Class Name Statechart DSL Filename

n1 Dishwasher Dishwasher.dsl
n2 Heater Heater.dsl
n3 Jet Jet.dsl
n4 Tank Tank.dsl

Figure 3.8 Statechart DSL filenames for classes of dishwasher system

3.2.2 Statechart Module

 The statechart module receives the statechart DSL filenames from the class

diagram module and it then reads the corresponding input statechart DSL file and

records the information of the statechart into a state table, thus transforming the

information from DSL format to a table format. Figure 3.9 shows the statechart

specifications of the Dishwasher class (Figure 3.2) of the dishwasher system in

DSL format.

Figure 3.9 Statechart specifications of Dishwasher class in DSL format

OSTD (g2)[nodes{n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,n14,n15,n16,n17,n18,n19},
arcs{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20}];

OSTDN(n1)[loc(15:15),size(20:20),ostdnAttr(name:START)];
OSTDN(n2)[loc(10:100),size(70:50),ostdnAttr(name:PowerOff)];
OSTDN(n3)[loc(160:10),size(460:720),ostdnAttr(name:PowerOn,concurrent{n4,n15})];
OSTDN(n4)[loc(160:30),size(460:350),ostdnAttr(name:Active,substates{n5,n6,n14})];
OSTDN(n5)[loc(170:60),size(20:20),ostdnAttr(name:START)];
OSTDN(n6)[loc(225:30),size(240:300),ostdnAttr(name:DoorClosed,sequential{n7,n8,n9,n10,
n11,n12,n13})];
OSTDN(n7)[loc(410:50),size(30:25),ostdnAttr(name:HISTORY)];
OSTDN(n8)[loc(390:90),size(70:50),ostdnAttr(name:Stop)];
……………………………………………………………….
OSTDA(a1)[from(n1,side:BOTTOM,off:10),to(n2,side:TOP,off:30)];
OSTDA(a2)[from(n2,side:RIGHT,off:10),to(n3,side:LEFT,off:90),ostdaAttr(name:powerBut)]
OSTDA(a3)[from(n3,side:LEFT,off:110),to(n2,side:RIGHT,off:45),ostdaAttr(name:powerBut)
OSTDA(a4)[from(n5,side:RIGHT,off:10),to(n6,side:LEFT,off:35)];
OSTDA(a5)[from(n14,side:LEFT,off:10),to(n7,side:RIGHT,off:15),ostdaAttr(name:close)];
OSTDA(a6)[from(n6,side:RIGHT,off:70),to(n14,side:LEFT,off:35),ostdaAttr(name:open)];…
OSTDA(a7)[from(n7,side:BOTTOM,off:15),to(n8,side:TOP,off:35)];
OSTDA(a8)[from(n8,side:BOTTOM,off:35),to(n9,side:TOP,off:35),ostdaAttr(name:startBut/
setUp)];
……………………………………………………………..

 38

Outgoing Transitions State

ID
State Name
*=default

Substates Substate
Events ID Event Action Next

State
n2 Idle* a2 jetOn n3
n3 Running n5, n6 jetPulse a3 jetOff n2
n5 Spraying* a5 jetPulse n6
n6 Pulsing

Figure 3.10 Part of the updated state table for statechart of Jet class

Outgoing Transitions State

ID
State Name
* = default
+ = history

Substates Substate
Events ID Event Action Next

State
n2 PowerOff* a2 powerBut n3
n3 PowerOn n4, n15 open, close,

startBut,
full, rinsed,
washed,
empty,
finish
intMode,
quickMode,
normMode

a3 powerBut n2

n4 Active n6, n14
n6 DoorClosed+ n8,n9,n10,

n11,n12,n13
startBut,
full, rinsed,
washed,
empty,
finish

a5 open n14

n8 Stop* a8 startBut setUp n9
n9 Filling a9 full n10
n10 Rinsing a10 rinsed n11
n11 Washing a11 washed n12
n12 Draining a12 empty n13
n13 Drying a13 finish n8
n14 DoorOpen a14 close n6
n15 Mode n17,n18,n19 intMode,

quickMode,
normMode

a15 intMode n18 n17 Normal*
a20 quickMode n19
a16 normMode n17 n18 Intensive
a17 quickMode n19
a18 intMode n18 n19 Quick
a19 normMode n17

Figure 3.11 Part of the updated state table for statechart of Dishwasher class

 39

 The statechart module then processes the state table and removes the

information of the pseudostates (Initial, History, Fork and Join etc.) from the state

table and updates the table accordingly. Figure 3.10.shows the updated state table

for the statechart diagram of the Jet class (Figure 3.4). Figure 3.11 shows the

updated state table for the statechart diagram of the Dishwasher class (Figure 3.2).

 The statechart module returns the transformed state table back to the class

diagram module. The state table is stored in the ClassInfo table along with other

information of the corresponding class. Figure 3.12 shows the part of the updated

class table for the dishwasher system after the processing of the statechart module.

Data members Class

ID
Class Name

Visibility Name Type
State Table

public cycle int
public rinseTime int
public washTime int
public dryTime int
public heater Heater
public jet Jet

n1 Dishwasher

public tank Tank

Dishwasher state table

n2 Heater Heater state table
n3 Jet Jet state table
n4 Tank Tank state table

Figure 3.12 Part of the updated class table for dishwasher system

3.2.3 Code Generation Module

 In the code generation module, the system takes information from the class and

state tables and generates the Java code for the entire application model following

our proposed code generation approach.

 40

Application Class

 In our approach, an application class is generated with a main() method that acts

as an entry point to the whole system. For the dishwasher system, as shown in

Figure 3.1, the main application class DishwasherAppl, is generated. The name of

the class is derived from the project name specified in the input class diagram DSL

file (Figure. 3.7). All the instances of classes of the class diagram are declared and

initialized in the constructor of this class. The application object is created and

initialized in the main() method. The initialization code is also defined here. Figure

3.13 shows the generated Java code for the application class of the dishwasher

system

Figure 3.13 Generated code for the application class of dishwasher system

Classes in the Class Diagram

 All classes within the class diagram are transformed into Java code. For each

class of the class diagram, a separate file with (.java) extension is generated. The

class DishwasherAppl {
 //*** Data Members ***
 public Tank tank;
 public Jet jet;
 public Heater heater;
 public Dishwasher dishwasher;
 //*** Constructor of the Application class ***
 public DishwasherAppl() {
 tank = new Tank();
 jet = new Jet();
 heater = new Heater();
 dishwasher = new Dishwasher();
 } //end of the Constructor
 public static void main(String args[]) {
 //*** Creating the Application class instance ***
 DishwasherAppl dishwasherAppl = new DishwasherAppl();
 } // End of Main Method
} // End of DishwasherAppl class

 41

generated code contains all the class definitions of name, attributes and methods.

Relationships between classes are identified and transformed into code. To

implement the associations between classes, reference attributes with public

visibility are generated in the corresponding classes. If the association is

bidirectional then reference attributes are generated in both classes and if the

association is unidirectional then reference attribute is generated in the source class

only.

 If the class has an associated statechart, then the generated code for the class

contains not only the structural code but it also contains the behavioral code for the

class. Additional classes, implementing the state specific behavior, are generated in

the same Java file that implements the context class. To implement a statechart

diagram, the collaborator object approach, described in the chapter 2, is used,

where each state becomes a class and each transition becomes an operation in that

class. The transformation rules are summarized in Table 3. Figure 3.14 shows the

code generated for the Dishwasher class of the dishwasher system.

Table 3 UML to Java transformation for JCode

UML Collaborator Object Approach

State Class. All the behavior associated with a
particular state is contained in one class

Event Method in the corresponding state class

Action Method in the context class

Entry / Exit Actions Method in the corresponding state class
Hierarchical and Concurrent
substates Object composition and delegation

 42

Figure 3.14 Part of the generated code for the Dishwasher class

class Dishwasher {
 //**** Attributes ******
 public int cycles;
 public int rinseTime;
 public int washTime;
 public int dryTime;
 //**** Associations ******
 public int washTime;
 public int washTime;
 public int washTime;
 //**** Statechart ******
 public DishwasherState state; // collaborator
object
//*** References for all the state objects ***
 public PowerOff powerOffState;
 public PowerOn powerOnState;
 public DoorOpen doorOpenState;
 public DoorClosed doosClosedState
………
 public Dishwasher() { // constructor
//*** Creating state objects only once here ***
 jet = new Jet(); Heater = new Heater();
 tank = new Tank();
 powerOffState = new PowerOff(this);
 powerOnState = new PowerOn(this);
 doorOpenState = new DoorOpen(this,
powerOnState); ………
 state = powerOffState;// setting the default state
 }
//*** Change the current State ***
 public void setState(DishwasherState st) {
 state = st;
 state.entry(); // executing entry action new state
 }
//*** Delegating incoming events to Concrete
State Subclasses ***
 public void powerBut() { state.powerBut(); }
 public void open() {state.open(); }
 public void intMode() { state.intMode(); }
……….
 //**** Actions of statechart ******
 public void setup() { }
} // End of Dishwasher class
class DishWasherState { // Abstract state class
 public Dishwasher dishwasher; //Reference of
Context Object
//*** Declaring Abstract Method ***
 public void entry() {};
 public void exit() {};
 public void powerBut() {};
 public void open() {};
 public void intMode() {}; ………….}

 //**** composite state *****
class Running extends DishwasherState {
private AbsActiveState activeState;
private AbsModeState modeState;
 PowerOn (Dishwasher dishwashers) {
 super(dishwashers); }
 public void entry() {
 activeState = dishwasher.doorClosedState;
 activeState.entry();
 modeState = dishwasher.normalState;
 modeState.entry();
 }
//*** Substates Events ***
 public void close() {//delegates to e object
 activeState.close(); }
//*** Outgoing Events ***
 public void powerBut() { activeState.exit();
 modeState.exit(); exit();
dishwasher.setState(dishwasher.powerOffState);}
………….}
 //****Abstract composite state class *****//
class AbsActiveState {
 public Dishwasher m_context; //Super Context
 public PowerOn s_context; // Composite state
//*** Defining abstract methods for Active
 concurrent Region *** //
}
class DoorOpen extends AbsActiveState{
 public void close() { exit();
s_context.setActive(m_context.doorClosedState);
 } }
class DoorClosed extends AbsActiveState{
 private AbsDoorClosedState substate;
 private int hist;
 public void startBut() { subState.startBut(); }
 }
………………………..
 //****Abstract composite state class *****//
class AbsModeState {
 public Dishwasher m_context; //Super Context
 public PowerOn s_context; // Composite state
//*** Defining abstract methods for Mode
 concurrent Region *** //
}
class Normal extends AbsModeState{
 public void intMode() { exit();
 s_context.setMode(m_context.intensiveState);
 }
 public void quickMode() { exit();
 s_context.setMode(m_context.quickState); } }
……………..

 43

Chapter 4

Code Generating System: JCode

 We have developed the JCode system, which automatically generates Java code

from the specifications of the UML class and statechart diagrams of a system using

our approach. JCode is the successor of OCode. JCode uses state machines of

objects and structural specifications as given in the class diagram of the system and

generates code for the entire application model. It generates the code for the

objects as well as their behavior and action specifications. In this chapter, we

describe the JCode system in detail.

 We will use the example of an Air Conditioner application to describe the detail

working of the JCode System. Figure 4.1 shows the static structure of the Air

Conditioner system. The Air Conditioner system consists of six classes, namely

AirCon, DisplayInterface, PowerButton, SpeedButton, ModeButton and

TempButton. The DisplayInterface and AirCon class has a one-to-one association.

The DisplayInterface class has one way aggregation relationships with

PowerButton, ModeButton, SpeedButton and TempButton classes. Aggregation

represents a whole/part relationship. The DisplayInterface represents the “whole”

and PowerButton, ModeButton, SpeedButton and TempButton represent the “part”.

The dynamic behavior of the AirCon class is specified in the statechart diagram as

shown in Figure 4.2.

 44

Figure 4.1 Class diagram for the air conditioner system

Figure 4.2 Statechart of AirCon class

 45

 The input to the JCode system is the model specifications in Design Schema

List (DSL) language [29]. The output from the JCode system is the Java [30] code.

JCode is developed in Java and is basically composed of six modules: Main

module, CDAnalyzer, CDTransformer, SCAnalyzer, SCTransformer and

CodeGenerator module. Figure 4.3 shows the overall structure of the JCode system.

Figure 4.3 Structure of the JCode system

4.1 Main Module

 The Main module is the main controlling module. The main module takes the

specifications of the class diagram in DSL format as input for the JCode system. It

then calls CDAnalyzer and CDTransformer modules to process the class diagram

DSL file. If a statechart is attached to a class then the CDTransformer module in

Class
Diagram
DSL file

Statechart Module

Class and
State Tables

ClassDiagramModule

Java
 code

Intermediate
Tables

CDAnalyzer

CDTransformer Code
Generator

SCAnalyzer

SCTransformer

Statechart
 DSL file name

Intermediate
Tables

State Tables

Statechart
 DSL file

 46

turn calls the SCAnalyzer and SCTransformer modules to process the statechart

DSL file. Finally the main module calls the Code Generator module to generate the

Java code for the entire application model.

 A number of classes have been used to form the structure of a nested table and

to represent the elements of the class and statechart diagrams. These classes

include: ClassInfo, MemberData, MemberFunc, Relation, State, Transition, Event,

Argument, Internal Event and Join.

4.2 CDAnalyzer

 The CDAnalyzer module reads the specifications of the class diagram, given in

DSL format, and stores the information into two tables, namely ClassInfo (for

classes) and Relation (for relationship between classes) thus transforming the class

diagram information from DSL format to a table format. Figure 4.4 shows the class

diagram specifications of the air conditioner system in DSL format.

Figure 4.4 Class diagram specifications of air conditioner system in DSL format

OOD (g1)[nodes{n1,n2,n3,n4,n5,n6},arcs{a1,a2,a3,a4,a5}, oodAttr(name:AirConditioner)];

OODN(n1)[loc(50:50),size(40:60),oodnAttr(name:DisplayInterface)];
OODN(n2)[loc(150:250),size(40:50),oodnAttr(name:AirCon, interface: AirCon.dsl)];
OODN(n3)[loc(250:350),size(40:50),oodnAttr(name:PowerButton)];
OODN(n4)[loc(350:150),size(40:50),oodnAttr(name:ModeButton)];
…………………
OODA(a1)[from(n1,side:TOP,off:25),to(n2,side:BOTTOM,off:35), oodaAttr(arcType:assoc,
forwardMult:1,reverseMult:1)];
OODA(a2)[from(n3,side:RIGHT,off:30),to(n1,side:LEFT,off:40), oodaAttr(arcType:aggr,
forwardMult:1, reverseMult:0)];
OODA(a3)[from(n4,side:RIGHT,off:25),to(n1,side:LEFT,off:35), oodaAttr(arcType:aggr,
forwardMult:1, reverseMult:0)];
OODA(a4)[from(n5,side:LEFT,off:25),to(n1,side:RIGHT,off:35), oodaAttr(arcType:aggr,
forwardMult:1, reverseMult:0)];

 47

 The CDAnalyzer module has a number of methods. The most important

methods are readCDFile, analyzerCD and analyzeCDLine. Following is the

brief description of the functionality of these methods.

The readCDFile Method

 The readCDFile method reads the DSL file character by character, throws all

the white spaces and creates a long string that contains all the DSL statements of

the class diagram. It stores the long string in a variable, dataCDFile, of type String.

It passes this long string to the analyzerCD method for processing the class

diagram.

The analyzerCD Method

 This method takes the class diagram DSL file as a long string and splits the long

string into several small strings, each representing a DSL statement. A DSL

statement always ends on a semicolon, so the DSL file string is split on semicolons.

Each string, which represents a DSL statement, becomes an element of an array.

The analyzerCD method then starts a loop which calls the analyzeCDLine

method (explained below) for each element of this string array and passes the

string as argument.

The analyzeCDLine Method

 This is a long method which takes a string, representing a DSL statement, as

arguments and analyzes it. It collects the information contained in the DSL

statement and, based on this information instantiates objects of ClassInfo and

Relation classes and stores the information into these two tables. Nodes in DSL

represent the classes. All the information about the classes is stored in the

 48

ClassInfo table. Arcs in DSL represent the relationships among classes. All the

information about the relationships is stored in the Relation table. For example

after reading the following DSL statement

OODN(n2)[loc(150:250),size(40:50),oodnAttr(name:AirCon, interface: AirCon.dsl)]

a ClassInfo object having the values of its id attribute as “n2” will be searched. If

the object does not exist, it will be created. The name attribute will be initialized

with the value “AirCon” and the statechartFileName attribute will be initialized

with the value “AirCon.dsl”. Figure 4.5 shows the part of the ClassInfo table of the

air conditioner system.

Data members Class

ID
Class Name

Visibility Name Type
Statechart
DSL Filename

n1 DisplayInterface
n2 AirCon AirCon.dsl
n3 PowerButton
n4 ModeButton
n5 SpeedButton
n6 TempButton

Figure 4.5 Part of the ClassInfo table for air conditioner system

4.3 CDTransformer

 After the CDAnalyzer module does its job, the information contained in the

DSL file is converted into an intermediate form in which the class diagram

elements are represented as object instances. This information, however, is

unorganized and needs to be transformed. DSL, being graphical oriented, treats

relations as arcs so we need to process the Relation table and update the ClassInfo

table to properly record the information for code generation.

 49

The processRelation Method

 This method processes the Relation table and updates the ClassInfo table for

relationship between classes. If the relationship is of type inheritance then the child

class attribute inherit is set to true and the name of the parent class is also set in the

parent attribute of the child class. If the relationship is of type aggregation or

association then the multiplicity on both ends is checked and relationship attributes

are added in the respective classes.

 The CDTransformer module then process the ClassInfo table and extracts the

statechart DSL filenames and passes this information to the SCAnalyzer module

for processing the statechart DSL file. Figure 4.6 shows the statechart DSL

filenames for the air conditioner system passed to the SCAnalyzer module.

Class ID Class Name Statechart DSL Filename

n1 DisplayInterface
n2 AirCon AirCon.dsl
n3 PowerButton
n4 ModeButton
n5 SpeedButton
n6 TempButton

Figure 4.6 Statechart DSL filenames for classes of air conditioner system

4.4 SCAnalyzer

 The SCAnalyzer module receives the statechart DSL filenames from the

CDTransformer module and it then reads the specifications of the statechart

diagram, given in DSL format and stores the information into two tables namely

State and Transition thus transforming the information from DSL format to a table

 50

format. Figure 4.7 shows the statechart specifications of AirCon class in DSL

format.

Figure 4.7 Statechart specifications of AirCon class in DSL format

The SCAnalyzer module has a number of methods. The most important methods

are readSCFile, analyzerSC and analyzeSCLine. Following is the brief

description of the functionality of these methods.

The readSCFile Method

 This readSCFile method reads the statechart DSL file character by character,

throws all the white spaces and creates a long string that contains all the DSL

statements. It stores the long string in a variable, dataSCFile, of type String. It

passes this long string to the analyzerSC method for processing the statechart

diagram.

OSTD (AirCon)[nodes{n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12},arcs{a1,a2,a3,a4,a5,a6, a7,
 a8, a9,a10,a11}];
OSTDN(n1)[loc(25:20),size(20:20),ostdnAttr(name:START)];
OSTDN(n2)[loc(10:140),size(75:125),ostdnAttr(name:Stop)];
OSTDN(n3)[loc(125:160),size(10:100),ostdnAttr(name:FORK)];
OSTDN(n4)[loc(160:10),size(260:400),ostdnAttr(name:Operating,entry/setOn,exit/setOff,
 event(name:tempPlusBut)/tempUp,concurrent{n5,n9})];
OSTDN(n5)[loc(160:20),size(260:180),ostdnAttr(name:Mode,substates{n6,n7,n8})];
OSTDN(n6)[loc(190:150),size(30:25),ostdnAttr(name:HISTORY)];
……………………………………………..
OSTDA(a1)[from(n1,side:BOTTOM,off:5),to(n2,side:TOP,off:40)];
OSTDA(a2)[from(n2,side:RIGHT,off:35),to(n3,side:LEFT,off:140),ostdaAttr(name:powerBut)
];
………………………………………………

 51

The analyzerSC Method

 This method takes the DSL file of the statechart as a long string from the

readSCFile method and splits the long string into several small strings each

representing a DSL statement. A DSL statement always ends on a semicolon, so

the DSL file string is split on semicolons. Each string, which represents a DSL

statement, becomes an element of an array. The analyzerSC method then starts a

loop which calls the analyzeSCLine method (explained below) for each string

and passes the string as argument.

The analyzeSCLine Method

 This is a long method which takes a string, representing a DSL statement, as

argument and analyzes it. It collects the information contained in the DSL

statement and, based on this information instantiates objects of State and

Transition classes and stores the information into these two tables for the class

with which the statechart is attached. Nodes in DSL of the statechart diagram

represent the states. All the information about the states is stored in the State table.

Arcs in DSL of the statechart diagram represent the transitions of the statecharts.

All the information about the transitions is stored in the Transition table. For

example after reading the following DSL statement

OSTDN(n4)[loc(160:10),size(260:400),ostdnAttr(name:Operating,entry/setOn,exit/
setOff,event(name:tempPlusBut)/tempUp,concurrent{n5,n9})]

a State object having the values of its id attribute as “n4” will be searched. If the

object does not exist, it will be created. The name attribute will be initialized with

the value “Operating” and the type of state is set to concurrent. The substate

attribute which is an array of pointers to other State objects and represents the

 52

substates of the current state will contain pointers to the State objects having ids

“n5” and “n9”. Similarly the information about the transitions, which includes

name of the triggering event, event action, source state and target state, is stored in

the Transition table. Figure 4.8 shows the part of the State table for the statechart

diagram of the AirCon class.

Outgoing Transitions State

ID
State Name

Substates Internal
Event ID Event Action Next

State
n1 START a1 n2
n2 Stop a2 powerBut n3

a3 n6 n3 FORK
a4 n10

n4 Operating n5, n9 tempPlusBut
/ tempUp()

a5 powerBut n2

n5 Mode n6, n7, n8
n7 HISTORY a6 n7
n7 Cooler a7 modeBut setHeater n8
n8 Heater a8 modeBut setCooler n7
n9 Speed n10, n11, n12
n10 HISTORY a9 n11
n11 Low a10 speedBut setHigh n12
n12 High a11 speedBut setLow n11

Figure 4.8 Part of the state table for statechart of AirCon Class

4.5 SCTransformer

 After the SCAnalyzer module does its job, the information contained in the

DSL file is converted into an intermediate form in which the state diagram

elements are represented as object instances. This information, however, is

unorganized and needs to be transformed. For example, in a statechart diagram, the

pseudostates (e.g. Start state, history, fork, join etc.) are shown with their special

symbols. DSL, being graphical oriented, treats them as a node like any other node

 53

but in effect they are not the real states of an object so we need to eliminate them

and update the table with the semantics of these pseudostates. Also, for code

generation, we need to know not only the events that are supposed to occur on a

state itself but also the events that may occur on its substates. The purpose of the

SCTransformer module is to refine the information given by the SCAnalyzer

module in a way so that code can be easily generated from it. The arrangeSC and

findEventsActions are the important methods. Following is the brief description

of these methods.

The arrangeSC Method

 This method processes the State table and removes the pseudostates from the

table and it also updates the Transition table for the transitions going out or coming

in to these pseudostates so that their semantics are fully implemented and code can

be easily generated. This method then processes the Transition table and stores the

information of each transition in the source state in the State table as outgoing

transition. Finally this method sorts the State table such that the super state comes

before all of its substates.

The findEventsActions Method

 This method finds out for each super state object the events that occur on the

substates of that state. It uses the pointers in the susbstates array and then follows

the transitions and internal events of each of the substates to fetch the events and

actions. Figure 4.9 shows the part of the updated State table for the AirCon class

after transformation.

 54

Outgoing Transitions State
ID

State Name
*=default
+=history

Substates Substate
Events ID Event Action Next

State
n2 Stop* a2 powerBut n4
n4 Operating n5, n9 modeBut,

speedBut
a5 powerBut n2

n5 Mode+ n7, n8 modeBut
n7 Cooler* a7 modeBut setHeater n8
n8 Heater a8 modeBut setCooler n7
n9 Speed+ n11, n12 speedBut
n11 Low* a10 speedBut setHigh n12
n12 High a11 speedBut setLow n11

Figure 4.9 Part of the updated state table for statechart of AirCon class.

 The SCTransformer module then passes the transformed State table back to the

CDTransformer module. The State table is stored in the ClassInfo table along with

other information of the corresponding class. Figure 4.10 shows the part of the

ClassInfo table for the air conditioner system after the processing of the

SCTransformer module.

Data members Class

ID
Class Name

Visibility Name Type
State Table

public airCon AirCon
public powerButton PowerButton
public modeButton ModeButton
public speedButton SpeedButton

n1

DisplayInterface

public tempButton TempButton

n2 AirCon public displayInterface DisplayInterface AirCon state
table

n3 PowerButton
n4 ModeButton
n5 SpeedButton
n6 TempButton

Figure 4.10 Part of the updated ClassInfo table for air conditioner system

 55

4.6 Code Generator

 This module uses the transformed ClassInfo and State tables given to it by the

CDTransformer module and generates the Java code for the entire application. It

first creates a new directory with the same name as the application name and then

it generates separate Java files for each of the classes of the class diagram. If there

is an associated statechart then the code for the statechart is also generated in the

same Java file. The generated code for each of the Java file is first written to a

string buffer and in the end the buffer is written to disk.

 The Code Generator module first executes the generateApplication method

which generates code for the main application class. Figure 4.11 shows the

generated code for the application class of the air conditioner system.

Figure 4.11 Generated code for the application class of air conditioner system

class AirConditioner {
 //*** Data Members ***
 public TempButton tempButton;
 public SpeedButton speedButton;
 public ModeButton modeButton;
 public PowerButton powerButton;
 public AirCon airCon;
 public DisplayInterface displayInterface;
 //*** Constructor of the Application class ***
 public AirConditioner() {
 tempButton = new TempButton();
 speedButton = new SpeedButton();
 modeButton = new ModeButton();
 powerButton = new PowerButton();
 airCon = new AirCon();
 displayInterface = new DisplayInterface();
 } //end of the Constructor
 public static void main(String args[]) {
 //*** Creating the Application class instance ***
 AirConditioner airConditioner = new AirConditioner();
 } // End of Main Method

 56

 A loop is then started which calls the generateClassInfo method for each class

object present in the ClassInfo table and passes the class as the input parameter.

The generateClassInfo Method

 The generateClassInfo method first checks if a statechart is attached to the

class. If there is no statechart attached then it generates all the structural code of

the class in a separate java file as described in chapter 3. Figure 4.12 shows the

code for the DisplayInterface class of the air conditioner system (Figure 4.1).

Figure 4.12 Generated code for the DisplayInterface class

 If the class has an associated statechart (e.g. AirCon class Figure 4.2), then it

calls the generateContext method to generate the code for the context class. The

code for the context class contains the combined code for the structural

specifications as well as for the behavioral specifications.

class DisplayInterface {
 //*** Data Members ***
 public PowerButton powerButton;
 public AirCon airCon;
 public TempButton tempButton;
 public SpeedButton speedButton;
 public ModeButton modeButton;
 //*** Constructor ***
 public DisplayInterface() {
 powerButton = new PowerButton();
 airCon = new AirCon();
 tempButton = new TempButton();
 speedButton = new SpeedButton();
 modeButton = new ModeButton();
 }
} // End of class DisplayInterface
} // End of AirConditioner class

 57

The generateContext Method

 The generateContext method generates the Java code for the class attributes,

associations, methods and it also includes code for attached statechart according to

the collaborator object approach as described in chapter 2. First of all code for all

the attributes and associations of the context class are generated. Then collaborator

object state and all the state objects are defined. The constructor is then generated.

All the state objects are created once in the constructor. The collaborator object

state is also initialized to the default state in the constructor. All the events of the

statechart become methods in the context class. The body of these methods

contains only a statement which delegates the event to the collaborator object. All

the actions of the statechart become methods in the context class. The body code of

the actions methods has to be entered by the user. Finally the code for the member

functions of the context class is generated.

 An abstract state class is generated in the same Java file. The name of the

context attribute is derived from the context class name and “State” is added to it.

The abstract state class contains an attribute for the context object and also

contains empty declarations for the entry/exit actions and all the events of the

statechart diagram.

 After this the generateContext method processes the State table of that class in

a loop and calls the following methods according to the type of the state.

The generateState Method

 The generateState method generates the code for the top level states having

no super state. A class is generated for each state. The name of the class is derived

from the name of the state. The state class is derived from the abstract state class.

 58

If the state has entry/exit actions, methods having the name entry and exit

respectively, are defined in the state class. Bodies of these methods contain a

method-call to the corresponding entry/exit actions. The code for internal events

and outgoing transitions (if any) is also generated. An event on any substate

becomes a method in the corresponding substate class. Body code for the method

is also completely generated. If the event is an internal event, the body code

contains a method-call, which executes the associated action. If the event has a

transition, the body code also contains: (i) call to the exit operation of the current

state, (ii) method-call for setting the next state, which in turn calls the entry actions

of the new state.

The generateHierarchical Method

 The generateHierarchical method generates the code for the hierarchical

composite state class in the same Java file as the context class. The hierarchical

composite state class contains a single collaborator object subState. The entry

method is also defined which sets the default active substate. Also, an exit method

is defined which contains a call to the exit actions of the active substate It also

contains the code for storing the active substate in the history state attribute. For

each event on the substates, a method is defined that delegates the event processing

to the substate and calls the method(s) for that event defined in the class(es) for the

substate(s). It also contains methods for setting the next substate and calling the

entry action of the next substate.

The generateConcurrent Method

 The generateConcurrent method generates the code for the concurrent

composite state class in the same Java file as context class. The concurrent

composite state, class contains as many collaborator objects as there are concurrent

 59

regions in the composite state. The composite state class is responsible for

implementing the fork. Also, an exit method is defined which contains a call to the

exit actions of the active substates in each of the concurrent regions. It also

contains the code for storing the active substate in the history state attribute. For

each event on the substates, a method is defined that delegates the event processing

to the substate and calls the method(s) for that event defined in the class(es) for the

substate(s). It also contains methods for setting the next substate and calling the

entry action of the next substate.

The generateRegion Method

 The generateConcurrent method generates code for the concurrent region.

The concurrent region becomes a composite abstract class and serves as an

interface for its own subclasses. This class is not derived from any other class. In

addition to the entry and exit operations, it contains empty declarations for

operations corresponding to its substates. It also contains two objects, namely

m_context and s_context. m_context provides access to the context class for

executing the actions associated with events and entry/exit operations and

s_context provides access to the composite state class to change the next substate.

The generateSubState Method

 The generateSubState method generates the code for the substate. A class is

generated for each substate. The name of the class is derived from the name of the

substate. The state class is derived from the composite abstract state class. If the

state has entry/exit actions, methods having the name entry and exit respectively,

are defined in the state class. Bodies of these methods contain a method-call to the

corresponding entry/exit actions. The code for internal events and outgoing

transitions (if any) is also generated.

 60

class AirCon { // context class
 DisplayInterface displayInterface; // date member
 public AirConState state; // collaborator object
 public Stop stopState;
 public Operating operatingState;
 public Cooler coolerState;
 public Heater heaterState;
 public Low lowState;
 public High highState;
AirCon() { //constructor
 stopState = new Stop(this);
 operatingState = new Operating(this);
 coolerState = new Cooler(this,operatingState);
 heaterState = new Heater(this,operatingState);
 lowState = new Low(this,operatingState);
 highState = new High(this,operatingState);
 state = stopState // setting default state }
public void setState(AirConState st) {
 state = st;
 state.entry(); }
public powerBut() { state.powerBut(); }
public modeBut() {state.modeBut(); }
………………….
public void setOff() {……}
public void setCooler() {……}
………}

public AirConState { // abstract state class
 public AirCon airCon; // context reference
 public void entry() {};
 public void exit() {};
 public void powerBut() {};
 public void tempPlusBut() {};
…………..}

class Operating extends AirConState{ // composite
 private AbsModeState modeState;
 private AbsModeState modeHistory;
 private AbsSpeedState speedState;
 private AbsSpeedState speedHistory;
 int hist = 0;
public void entry() {
 if (hist > 0) {// last active substate
 modeState = modeHistory;
 speedState = speedHistory; }
else { // for first time entry
 modeState = airCon.coolerState;
 speedState = airCon.lowState; }
modeState.entry(); speedState.entry();
airCon.setOn(); }
public void exit() {airCon.setOff;
 modeHistory = modeState;
speedHistory = speedState; }
public void modeBut() { modeState.modeBut(); }
public void speedBut() { speedState.speedBut();
public void powerBut() {modeState.exit();
 speedState.exit(); exit();
airCon.setState(ac.stopState); }
public void setMode(AbsModeState subMode) {
 modeState = subMode; modeState.entry(); }...}
class AbsModeState { // abstract composite state
 public AirCon m_context;
 public Operating s_context;
/* Empty declarations for entry(), exit() and all
events methods of subclasses of AbsModeState*/
}
class Cooler extends AbsModeState{//substate class
 void modeBut() { m_context.setCooler(); exit();
 s_context.setMode(m_context.heaterState); } }

Figure 4.13 shows part of the code generated by JCode for the AirCon class of the

air conditioner system.

Figure 4.13 Part of the generated code for the AirCon class

 61

Chapter 5

Implementing Other Features of

Statechart Diagram

 The statechart diagram, when attached to a class, shows all the behavioral

aspects of the objects in that class. Concurrent substates not only represent the

inherent parallelism in some of the objects but also enable compact descriptions of

the complex state diagrams [20, 21]. This chapter discusses the other features of

statechart diagram such as fork, join and history state and how our proposed

approach implement these features in our code generating system JCode.

5.1 Fork and Join

 Fork and join pseudostates synchronize transitions entering or leaving

orthogonal regions of the concurrent composite state. A fork is a transition with

one source state and two or more target states. If the source state is active and the

trigger event occurs, the transition action is executed and all the target states

become active. A join is a transition with two or more source states and one target

 62

state. If all the source states are active and the trigger event occurs, the transition

action is executed and the target state becomes active.

 We use an example to simplify the explanation of our approach for

implementing fork and join. Consider the statechart attached with a Test class, as

shown in Figure 5.1. The statechart shows the behavior of the Test object.

Figure 5.1 Statechart for Test class containing Fork and Join

 The Test object has three top-level states namely A, B and G. The G state is a

composite state containing two concurrent substates Region1 and Region2.

Whenever the G state becomes active, both of its concurrent substates become

active at the same time. Each of the concurrent regions contains sequential

substates, i.e. Region1 has substates C and D and Region2 has substates E and F.

Only one of the sequential substates becomes active in each of the concurrent

regions. The state A is the default state. A transition from a solid circle to a state

shows that that the state is the default one. On transition t1, the control forks into

as many concurrent flows as there are concurrent substates. On transition t4, the

control joins back into one.

 63

5.1.1 Implementing Fork and Join

 In [26] the implementation of fork is distributed among the source state and the

context object and the source state is responsible for activating the target states of

the composite state. The fork state is the part of the composite state. In [28] and the

present study, we modified our implementation approach and encapsulated the

implementation of the fork in the composite state. The composite state is

responsible for activating its concurrent substates in each of the concurrent regions.

Fork is implemented in the entry() method of the composite state. In the entry()

method, the composite state sets the active substates in each of the concurrent

regions and also calls their entry() methods.

 To implement join, we have to make sure that all the source states are active

before the transition fires. We have implemented join in the entry() methods of the

source states. If all the other source states are active then the join transition is fired

by calling the corresponding event method of the super context class, which will

delegate it to the current active state.

 Figure 5.2 shows the part of the generated code for the Test class. Fork is

implemented in the entry() method of the B state class. Join is implemented in the

entry() methods of the substate classes D and F.

 64

Figure 5.2 Part of the generated code for the Test Class

5.2 History State

 A statechart describes the dynamic aspects of an object whose current behavior

depends on its past. A statechart in effect specifies the legal ordering of states an

object goes through its lifetime. History state allows a composite state that contains

sequential substates to remember the last substate that was active in it prior to the

transition from the composite state.

class G extends TestState { //composite state
 private AbsRegion1State region1State;
 private AbsRegion2State region2State;
 G (Test tests) { // constructor
 super(tests); }
public void entry() { // implementing fork
 region1State = test.cState;
 region1State.entry();
 region2State = test.eState;
 region2State.entry();}
public void t4() { // outgoing transition
 region1State.exit(); region2State.exit();
 exit(); test.setState(bState); }
public void t2() { region1State.t2(); }
public void t3() { region2State.t3(); }
public void setRegion1(AbsRegion1State
subRegion1) {region1State = subRegion1;
region1State.entry(); }
public AbsRegion2State getregion2State() {
 return region2State; }
………….}
class AbsRegion1State // abstract composite state
 public Test m_context;
 public G s_context;
/* Empty declarations for entry(), exit() and all
events methods of subclasses of
AbsRegion1State*/ }
class D extends AbsRegion1State {
 public void entry() { // implementing join
if (s_context.getregion2State().equals
(m_context.fState))
 m_context.t4(); } }
…………. }

class Test { // context class
 public TestState state; // collaborator object
 public A aState;
 public B bState;
 public G gState;
 public C cState;
 public D dState;
 public E eState;
 public F fState
Test() { //constructor
 aState = new A(this);
 bState = new B(this);
 gState = new G(this);
 cState = new C(this,gState);
 dState = new D(this,gState);
 eState = new E(this,gState);
 fState = new F(this,gState);
 state = aState // setting default state }
public void setState(TestState st) {
 state = st;
 state.entry(); }
public void t1() { state.t1(); }
….………}
public TestState { // abstract state class
 public Test test; // context reference
 public void entry() {};
 public void exit() {};
 public void t1() {};
 public void t4() {};
………….. }
Class A extends TestState { // state class
 public void t1() { exit();
 test.setState(test.gState); } }

 65

 We use an example to simplify the explanation of our approach for

implementing the history state. Consider the statechart attached with a CPlayer

class, as shown in Figure 5.3. The statechart shows the behavior of the CPlayer

object.

Figure 5.3 Statechart for CPlayer class containing history state

 The CPlayer object has two top level states namely PowerOff and PowerOn.

These states are activated alternatively whenever a powerBut event occurs. Initially

the CPlayer is in the default state PowerOff, where it accepts the powerBut event.

The CPlayer object reacts on such an event by switching from the PowerOff state

to PowerOn state. A state can have entry and exit actions, which are executed

when a state is activated or deactivated. When the PowerOn state is activated the

setOn action is executed, while setOff action is executed when the PowerOn state

is deactivated. A state can also have internal transitions. An internal transition has

an event trigger that causes an execution of an action without causing a change in

state. While in PowerOn state, if the volPlusBut event occurs then only the volUp

action will be executed and the CPlayer will remain in the PowerOn state.

 The PowerOn state is a hierarchical composite state containing two sequential

substates Stop and Play. One of these substates becomes active at the same time

 66

whenever the PowerOn state gets activated. Stop state is the default state. While in

PowerOn state, on playBut event, the CPlayer switches to the next sequential

substate Play. Similarly, on stopBut event, the CPlayer switches back to the

sequential substate Stop. On powerBut event, the CPlayer switches to the

PowerOff state. Sending a powerBut event will reactivate the CPlayer. When the

CPlayer is reactivated, it switches into the history state of the PowerOn state and

recalls the last active substate.

5.2.1 Implementing History State

 In [27] the implementation of the history state is distributed among the

composite state and the context object. The history state is part of the composite

state. In [28] and the present study, we modified our implementation approach and

encapsulated the implementation of the history in the composite state.

 If a composite state contains a history state, then a reference object, with

private visibility for maintaining history, is defined in the composite state class.

The name of the history reference is derived from the name of the composite state

class and “History” is added to it. The type of the history reference is the abstract

composite state class. Another variable hist, of type int, is also defined for

checking whether the history is being set for the first time or the subsequent time.

The variable hist is initialized to zero (0) in the constructor of the composite state

class. In the entry() method of the composite state the current value of hist

reference is checked. If hist is zero (0) it means that the composite state is activated

for the first time and the substate reference is initialized to the default substate of

the composite state and hist variable is set to one (1). If hist is greater than one then

the substate reference is assigned the history reference object. The history

reference is adjusted to the last active substate in the exit() method of the

 67

composite state class. Figure 5.4 shows the part of the generated code for the

CPlayer class.

Figure 5.4 Part of the generated code for the CPlayer Class

class CPlayer { // context class
 public CPlayerState state; // collaborator object
 public PowerOff powerOffState;
 public PowerOn powerOnState;
 public Stop stopState;
 public Play playState;
Test() { //constructor
 powerOffState = new PowerOff(this);
 powerOnState = new PowerOn(this);
 stopState = new Stop(this,powerOnState);
 playState = new Play(this,powerOnState);
 state = powerOffState // setting default state
 }
public void setState(TestState st) {
 state = st;
 state.entry(); }
public void powerBut() { state.powerBut(); }
public void volPlusBut() { state.volPlusBut(); }
// All actions become methods
public void setOn() {………}
………}
public CPlayerState { // Abstract state class
 public CPlayer cPlayer; // context reference
 public void entry() {};
 public void exit() {};
 public void powerBut() {};
 public void playBut() {};
………….. }
Class PowerOff extends CPlayerState {//state
class
 public void powerBut() { exit();
 cPlayer.setState(cPlayer.powerOnState);
 }
…….. }

class PowerOn extends CPlayerState{//composite
 private AbsPowerOnState subState;
 private AbsPowerOnState powerOnHistory;
..private int hist;
PowerOn (CPlayer cPlayers) { // constructor
 Super(cPlayers); hist = 0; }
public void entry() {
 if (hist >0) { // implementing history
 subState = powerOnHistory; }
 else {
 subState = cPlayer.stopState; hist = 1; }
 subState.entry();
 cPlayer.setOn(); // action }
public void exit() { cPlayer.setOff(); // action
 cPlayer.powerOnHistory = subState;
public void powerBut() { // outgoing transition
 subState.exit(); exit();
 cPlayer.setState(powerOffState); }
public void volPlusBut() { // Internal Transition
 cPlayer.volUp(); }
public void stopBut() { subState.stopBut(); }
public void setSub(AbsPowerOnState sub) {
 subState = sub; subState.entry(); }
.…….}
class AbsPowerOnState{//abstract composite
 public CPlayer m_context;
 public PowerOn s_context;
/* Empty declarations for entry(), exit() and all
events methods for substates */
………. }
class Stop extends AbsPowerOnState {
 public void playBut() { m_context.startPlay();
 exit(); s_context.setSub(m_context.stopState; }
….}

 68

Chapter 6

Comparison With Rhapsody and

OCode

 Rhapsody [19, 20, 21], which is a successor of STATEMATE [22], is a CASE

tool that allows creating UML models for an application and then generates C,

C++ or Java code for the application. Rhapsody generates code from UML class

and statechart diagrams. It follows an approach similar to switch statement

approach, described in chapter 2, to implement UML statechart diagram. Rhapsody

uses Object eXecution Framework (OXF) [19] for code generation.

 OCode [24, 25] is another tool for code generation from Object Modeling

Technique (OMT) [6, 31, 32, 33] dynamic models. OCode uses an approach

similar to helper object approach to generate code for OMT state transition

diagram. OMT state transition diagram is the predecessor of UML statechart

diagram. UML statechart diagram contains many features which are not present in

OMT state transition diagram, e.g. history states, fork and join, time events etc.

JCode is the successor of OCode.

 We will now compare the code generated by JCode with that of Rhapsody and

OCode. We generated code for six different applications. To compare the

 69

efficiency of the code generated by Rhapsody, OCode and JCode, we performed an

experiment in which the same sequence of 4000 requests was sent. Out of these

4000 events, some caused transitions while the remaining events did not cause any

transition and were ignored. For each event, the time taken to process the event

was calculated. We made all the actions methods empty and concentrated on

measuring the time taken while executing transitions, i.e. changing states. To have

more accurate results, we repeated the experiment 20 times and calculated the

average values. The experiment was performed on a Sun SPARC workstation.

6.1 Watch Application

 Figure 6.1 shows the static structure of the Watch application. The Watch

application consists of five classes namely Watch, DisplayArea, SetButton,

UpButton and ModeButton. The dynamic behavior of the Watch class is specified

in the statechart as shown in Figure 6.2. Table 4 shows the compactness of the

code generated by Rhapsody and JCode. Table 5 shows the comparison of

efficiency of the code generated by Rhapsody, OCode and JCode for watch

application.

Figure 6.1 Class diagram for the watch application

 70

Figure 6.2 Statechart of Watch class containing hierarchical states.

Table 4 Compactness of generated code for watch application

 Rhapsody Without OXF JCode

Source code: Number of lines 868 274

Source code: Number of bytes 28130 6360

Number of classes 10 18

 71

Table 5 Efficiency of generated code for watch application

Rhapsody

(x)
(millisecs)

OCode (y)
(millisecs)

JCode (z)
(millisecs)

Improvement
over Rhapsody

(x – z)/x*100

Improvement
over OCode
(y – z)/y*100

Total time for events
without
transitions(a)

8.25 3.90 3.05

Average Time per
event without
transition (a / 1400)

0.00589 0.00279 0.00218 63.00% 21.80%

Total time for events
having transitions(b) 25.10 18.50 10.50

Average Time per
event having
transition (b / 2600)

0.00965 0.00712 0.00404 58.20% 43.20%

Total time for all
events (c= a + b) 33.35 22.40 13.55

Average Time per
event (c / 4000) 0.00834 0.00560 0.00339 59.40% 39.50%

6.2 Microwave System

 Figure 6.3 shows the static structure of the Microwave system. The Microwave

system consists of six classes, namely Oven, DisplayPanel, StopButton,

StartButton, PowerButton and ModeButton. The dynamic behavior of the Oven

class is specified in the statechart as shown in Figure 6.4. Table 6 shows the

compactness of the code generated by Rhapsody and JCode and Table 7 shows the

comparison of efficiency of the code generated by Rhapsody, OCode and JCode

for the microwave system.

 72

Figure 6.3 Class diagram for the microwave system

Figure 6.4 Statechart of Oven class containing concurrent states.

 73

Table 6 Compactness of generated code for microwave system

 Rhapsody Without OXF JCode

Source code: Number of lines 1236 347

Source code: Number of bytes 40050 7890

Number of classes 14 22

Table 7 Efficiency of generated code for microwave system

Rhapsody

(x)
(millisecs)

OCode (y)
(millisecs)

JCode (z)
(millisecs)

Improvement
over Rhapsody

(x – z)/x*100

Improvement
over OCode
(y – z)/y*100

Total time for events
without
transitions(a)

5.80 3.75 2.95

Average Time per
event without
transition (a / 1330)

0.00436 0.00282 0.00222 49.10% 21.30%

Total time for events
having transitions(b) 26.05 28.30 10.35

Average Time per
event having
transition (b / 2670)

0.00976 0.01060 0.00388 60.30% 63.40%

Total time for all
events (c= a + b) 31.85 32.05 13.30

Average Time per
event (c / 4000) 0.00796 0.00801 0.00333 58.20% 58.50%

6.3 Dishwasher System

 We have generated the code for the Dishwasher system of Figure 3.1 and

compared the code generated by Rhapsody and JCode. Table 8 shows the

compactness of code generated by Rhapsody and JCode. Table 9 shows the

comparison of efficiency of the code generated by Rhapsody, OCode and JCode.

 74

Table 8 Compactness of generated code for dishwasher system

 Rhapsody Without OXF JCode

Source code: Number of lines 2175 613

Source code: Number of bytes 67900 13400

Number of classes 30 36

Table 9 Efficiency of generated code for dishwasher system

Rhapsody

(x)
(millisecs)

OCode (y)
(millisecs)

JCode (z)
(millisecs)

Improvement
over Rhapsody

(x – z)/x*100

Improvement
over OCode
(y – z)/y*100

Total time for events
without
transitions(a)

7.65 3.55 2.85

Average Time per
event without
transition (a / 1290)

0.00593 0.00275 0.00221 62.80% 19.70%

Total time for events
having transitions(b) 29.60 30.55 10.70

Average Time per
event having
transition (b / 2710)

0.01092 0.01127 0.00395 63.80% 65.00%

Total time for all
events (c= a + b) 37.25 34.10 13.55

Average Time per
event (c / 4000) 0.00931 0.00853 0.00339 63.60% 60.30%

6.4 Air Conditioner System

 We have generated the code for the Air Conditioner system of Figure 4.1 and

have compared the code generated by Rhapsody, OCode and JCode. Table 10

shows the compactness of the code generated by Rhapsody and JCode. Table 11

shows the comparison of efficiency of the code generated by Rhapsody, OCode

and JCode.

 75

Table 10 Compactness of generated code for air conditioner system

 Rhapsody Without OXF JCode

Source code: Number of lines 920 241

Source code: Number of bytes 29565 5445

Number of classes 12 16

Table 11 Efficiency of generated code for air conditioner system

Rhapsody

(x)
(millisecs)

OCode (y)
(millisecs)

JCode (z)
(millisecs)

Improvement
over Rhapsody

(x – z)/x*100

Improvement
over OCode
(y – z)/y*100

Total time for events
without
transitions(a)

8.80 4.30 3.65

Average Time per
event without
transition (a / 1750)

0.00501 0.00246 0.00208 58.50% 15.10%

Total time for events
having transitions(b) 28.30 19.35 8.20

Average Time per
event having
transition (b / 2250)

0.01257 0.00860 0.00364 71.00% 57.60%

Total time for all
events (c= a + b) 37.10 23.65 11.85

Average Time per
event (c / 4000) 0.00928 0.00591 0.00296 68.00% 49.90%

6.5 Cassette Player System

 We have generated the code for the Cassette Player system, described in

chapter 5, and compared the code generated by Rhapsody and JCode. Table 12

shows the compactness of code generated by Rhapsody and JCode. Table 13

shows the comparison of efficiency of the code generated by Rhapsody, OCode

and JCode.

 76

Table 12 Compactness of generated code for cassette player system

 Rhapsody Without OXF JCode

Source code: Number of lines 550 178

Source code: Number of bytes 13960 4031

Number of classes 6 12

Table 13 Efficiency of generated code for cassette player system

Rhapsody

(x)
(millisecs)

OCode (y)
(millisecs)

JCode (z)
(millisecs)

Improvement
over Rhapsody

(x – z)/x*100

Improvement
over OCode
(y – z)/y*100

Total time for events
without
transitions(a)

11.05 5.05 3.80

Average Time per
event without
transition (a / 1919)

0.00576 0.00263 0.00198 65.60% 24.80%

Total time for events
having transitions(b) 20.85 12.90 7.95

Average Time per
event having
transition (b / 2081)

0.00999 0.00620 0.00382 61.80% 38.40%

Total time for all
events (c= a + b) 31.90 17.95 11.75

Average Time per
event (c / 4000) 0.00798 0.00448 0.00294 63.20% 34.50%

6.6 Test Device Application

 We have generated the code for the Test Device application described in

chapter 5, and compared the code generated by Rhapsody and JCode. Table 14

shows the compactness of code generated by Rhapsody and JCode. Table 15

shows the comparison of efficiency of the code generated by Rhapsody, OCode

and JCode.

 77

Table 14 Compactness of generated code for test device application

 Rhapsody Without OXF JCode

Source code: Number of lines 727 215

Source code: Number of bytes 18575 4834

Number of classes 11 16

Table 15 Efficiency of generated code for test device application

Rhapsody

(x)
(millisecs)

OCode (y)
(millisecs)

JCode (z)
(millisecs)

Improvement
over Rhapsody

(x – z)/x*100

Improvement
over OCode
(y – z)/y*100

Total time for events
without
transitions(a)

5.05 4.40 3.95

Average Time per
event without
transition (a / 1778)

0.00284 0.00248 0.00222 21.80% 10.20%

Total time for events
having transitions(b) 23.10 22.05 9.10

Average Time per
event having
transition (b / 2222)

0.01039 0.00992 0.00409 60.60% 58.70%

Total time for all
events (c= a + b) 28.15 26.40 13.05

Average Time per
event (c / 4000) 0.00704 0.00660 0.00326 53.60% 50.60%

 78

6.7 Comparison Results

 Findings of the comparisons are as follows:

6.7.1 Compact Code

 Code generated by JCode is more compact. In all of the six applications, the

source code generated by Rhapsody is more than three times longer than the code

generated by JCode. Our approach may look like introducing many classes,

because the behavior for different states is distributed across several state

subclasses. However this distribution eliminates large conditional statements.

Large conditional statements are undesirable because they tend to make the code

less understandable and are difficult to modify and extend. In addition, as the

context class and events become subclasses of the OXF framework, the number of

classes is larger than that of JCode.

 OCode generates code for the class with which statechart is attached and it does

not generate code for other classes of the application model. To have a fair

comparison we compared the code generated by OCode with JCode for the

statecharts of AirCon class (Figure 4.2), Text class (Figure 5.1) and CPlayer class

(Figure 5.3). Table 16 shows the compactness of code generated by OCode and

JCode.

 79

Table 16 Compactness of code generated by OCode and JCode

 OCode JCode

 Source code: Number of lines 150 136

CPlayer Class Source code: Number of bytes 3964 3182

 Number of classes 6 7

 Source code: Number of lines 208 178

Test Class Source code: Number of bytes 5065 4021

 Number of classes 11 11

 Source code: Number of lines 231 192

AirCon Class Source code: Number of bytes 5614 4268

 Number of classes 10 10

 The results show that the code generated by JCode is about 10% more compact

than OCode. OCode generates almost the same number of classes.

 Rhapsody uses data values to represent states. Events are represented as classes

and are derived from the framework class RiJEvent. All the behavior of the context

class is put into one class. The code generator automatically derives model classes

from the framework classes based on the application classes. That is why

Rhapsody has a smaller number of classes than JCode. The transition searching is

performed by switch statement. Each event handler method contains the switch

statement and checks each state of the statechart to get the current active state.

Each state has its own event processing method. The entry/exit actions are

implemented as methods and for every state three different versions of entry

actions and two different versions of exit actions are generated. Even if the entry or

exit actions are not defined for a state, the empty method bodies are generated. As

events are represented as classes, a separate class containing the event definition is

 80

generated for each event of the statechart. That is why the code generated by

Rhapsody is more than three times longer than the code generated by JCode.

 OCode as well as JCode distribute the behavior among context and state classes.

The state classes contain implementation methods only for their specific events and

entry/exit actions. If there are no specific entry/exit actions or no outgoing

transitions for a state then the state classes execute the inherited methods from the

abstract state class. In OCode the state hierarchy is represented by inheritance and

concurrency by composite object, while JCode implements state hierarchy and

concurrency by object composition and delegation. That is why the number of

classes is almost the same in OCode and JCode. OCode uses temporary objects so

on each transition a new state object is created. JCode uses more persistent and

permanent objects and state objects are created once in the constructor of context

class. In OCode the setting of next state is the responsibility of the current state, so

the event method of the state object contains the code for setting the new state and

also calling the entry method of the new state. In JCode, the setting of next state is

the responsibility of the context class and a method setState() is defined in the

context class for this purpose. The current state after executing its exit action calls

the setState() method. The setState() method sets the new state and also executes

the entry action of the new state. That is why the code generated by JCode is about

10% more compact than OCode and more than three times more compact than

Rhapsody.

6.7.2 Efficient Code

 The results of the experiment show that in all of the six applications, the code

generated by JCode is about 60% more efficient than Rhapsody and about 50%

more efficient than OCode.

 81

 In Rhapsody, events are represented as objects. The client object calls the gen()

method of the context object, which creates the event object and then consumes the

event. Various framework classes are involved in the invocation of the event

processing mechanism. The transition searching is performed using a switch

statement. If there is a transition on the event then the corresponding event

handling method is called, otherwise it returns a false value and the event is

ignored. On transition, apart from setting the new state, various methods are

executed to perform the two exit actions and three entry action methods defined for

the corresponding state. When summed up, all this takes a considerable amount of

time to process an event.

 OCode uses temporary state objects and on every transition a new state object is

created which implements the behavior specific to the new state. The state

reference is updated with the new target state object. The state object is defined as

a class variable rather than the instance variable. Similarly, all the action methods

of the context class are also defined as class methods. On the occurrence of an

event, the context class delegates it to the helper object. There is no conditional

structure in the code and the transition searching is performed using polymorphism.

If there is no transition, then only the empty event method is executed by the state

object, which it inherits from the abstract state class and nothing more happens.

 JCode has used more persistent and permanent state objects and all the state

objects are created only once in the constructor of the context class. The

collaborator object is defined as an instance variable. All the action methods are

defined as instance methods. On the occurrence of an event, the context class

delegates it to the collaborator object. On transition, the event method defined in

the concrete state class is executed. The exit action of the current state is called,

followed by calling the setState() method of the context to set the collaborator

object with the reference of the new state and no new object is created. The

composite state class handles the event targeted to the composite state or its

 82

substates. If the target is a substate, then the composite state will delegate it to its

collaborator object for processing. The implementation of history and fork is

encapsulated in the composite state class. This minimizes the method calls. That is

why the time taken to process an event in JCode is markedly short.

 We have carried out another experiment to measure the effect on efficiency of

the JCode generated code by changing different design choices. We performed the

experiment for the watch application as shown in Figure 6.2. We have used the

same sequence of 4000 events for all the different versions and measured the time

taken to process the events. To have more accurate results we repeated the

experiments 20 times and calculated the average values. JCode uses permanent

state objects and actions as instance methods, while substates are implemented by

using the concept of object composition and delegation. We have used other design

choices such as states as temporary objects, actions as class methods and

implementation of substates with inheritance. Only one design choice is changed at

a time and the effects on the efficiency are measured for different combinations of

these design choices. Table 17 summarizes the effects on efficiency of the

generated code with different design choices.

Table 17 Efficiency of generated code with different design choices

JCode (Watch Application) Time
(millisecs)

Object composition + Permanent objects + Instance methods
(Implemented in JCode) 13.55

Inheritance + Permanent objects + Instance methods 13.50

Object composition + Permanent objects + Class methods 13.40

Object composition + Temporary objects + Instance methods 32.40

 83

 The results show that other design choices such as inheritance and class

methods do not have a significant effect on the efficiency of the generated code.

The use of temporary objects has a profound effect on the efficiency and the

performance is degraded significantly. We can conclude that the use of persistent

and permanent objects is the major reason for the JCode generated code to be more

efficient than the code generated by other systems.

 We have put all the behavior associated with a particular state into one class.

Because all the state-specific code is contained in a single state class, new states

and events can be added easily by defining new subclasses and operations.

Representing different states as separate objects makes the transitions more explicit

and the code more understandable. JCode also generates appropriate comments

within the code to make the generated code more readable and understandable.

 84

Chapter 7

Related Work

 The most related works are that of Rhapsody [19, 20, 21] and OCode [24, 25].

Rhapsody generates C, C++ and Java code from UML class and statechart

diagrams. OCode generates Java code from OMT dynamic models. As described

earlier, our code is more compact, efficient and readable than that of Rhapsody.

Our code is more efficient than OCode.

7.1 Implementing Class Diagram

 In addition to Rhapsody, there are other commercially available CASE tools

that support graphical editors to draw various UML diagrams and generate some of

the implementation code from some of these diagrams. ArgoUML [11], Poseidon

[12], Metamill [13], objectiF [14], MagicDraw [15] and Objecteering [16] allow to

create UML models and generate limited skeleton code from UML class diagrams.

Code generation from only the class diagram generates a limited skeleton code and

is not executable. These tools generate only the header files from the class

diagrams.

 85

7.2 Implementing Statechart with Switch Statement
 In this section we will discuss the approaches for implementing statecharts

which are based on switch statement approach [34] discussed in section 2.1 of

chapter 2.

 Metz et al [35] proposed an approach to implement statechart diagrams based

on switch statement [34]. States are represented as constant attributes, events and

actions as methods. All the behavior is put into one class. State transition is

performed using a switch statement. State hierarchy is implemented using flat

states and separate methods are defined to handle the transitions for substates and

history state. Concurrent states are not implemented.

7.3 Implementing Statechart with Design Patterns

 Our approach for implementing statecharts has some similarity with State

design pattern [36] but State pattern does not provide any means for implementing

the dynamic parts of the statechart. The State pattern provides a structural

mechanism and the implementation strategy of individual states, state hierarchy

and concurrency is left open. Several other design patterns have been proposed to

implement statechart diagram. These patterns focus on some particular features of

the statechart but none of them have been used in any code generating system.

Since a design pattern specifies a general solution for recurring design problems, it

is not expected to describe the details of the implementation. It provides guidelines

for the implementation but the actual implementation decisions have to be made by

the developer.

Douglass [34] proposed the State Table Pattern to implement the statechart

diagrams. States and transitions are modeled as classes. The context class contains

 86

a State Table instance that provides references to concrete state and transition

objects. The state table encapsulates the transition table of size num_states x

num_transitions. The context object sends an external event, encapsulated as a

constant, to the transition class that returns the resulting state. Next, the context

delegates the processing to the event to that state object. The transition table is a

sparse array and has a high initialization overhead as a large table is needed to be

initialized.

Yacoub and Ammar [37] proposed a pattern language of statecharts based on the

concepts of statecharts developed by Harel [4]. Basic Statechart pattern is an

extension to state design pattern [36] to implement guards and entry/exit actions.

Hierarchical Statechart and Orthogonal Statechart are extensions to Basic

Statechart pattern for implementing hierarchical and concurrent substates. History

State pattern is an extension of Hierarchical State pattern for implementing history

state.

Tomura et al. [38, 39] proposed the Statechart design pattern for finite state

machines. The context class has exactly one StateMachine object. The

StateMachine is a class for describing a statechart. The object of this class consists

of two set of states and transitions. The object corresponds to either of a statechart

diagram itself, sequential substate or a concurrent substate. Entry/exit actions,

guards and actions on transitions are all implemented as interfaces. Entry/exit

actions are implemented as methods in the state object and guards and actions are

implemented as methods in the corresponding transition object. The transition is

also represented as an object. On the occurrence of an event, each StateMachine

object automatically updates its current state by referring to its Transition objects

corresponding to the event. Transition searching is performed by a conditional

statement. There is no support for history state and join.

 87

 Samek [40, 41] proposed two design patterns, Hierarchical State Machine

(HSM) and the Quantum Hierarchical state machine (QHsm), to implement state

hierarchy and transition dynamics. In HSM, states are represented as instances of

the State class, but unlike the state pattern [36], the State class in not intended for

subclassing but rather for inclusion as is. The important attributes of State class are

the event handler (to describe behavior specific to state) and a pointer to superstate

(to define nesting of the state). All states are potentially composite as there is no

distinction between composite states and the leaf states. Messages are represented

as instances of Msg class or its subclasses. All messages carry event type as

attribute. Events are handled by event handlers which are member function of

HSM class. Transition searching is performed using a switch statement inside the

event handler function. Entry/exit actions and default transitions are also

implemented inside the event handler function. The state machine engine generates

and dispatches these events to appropriate handlers upon state transition.

 The QHsm is an improved version of HSM. The QHsm class provides

implementation for the event handler function and the function that implements the

state transitions. ConcreteQHsm classes are derived from QHsm class and they

have to implement functions for handling the events in specific states (one function

for each composite and simple state). The dispatcher function inherited from

QHsm is responsible for delegating events from the deepest state in the hierarchy

until it is handled or the top state is reached. Although this pattern provides support

for reflecting the state hierarchy and flexible implementation of transitions, the

action associated to the transition cannot be directly represented. The action has to

be performed before or after entry/exit action. Concurrency and history state are

not supported by both HSM and QHsm.

 Pinter and Majzik [42] proposed an extension to QHsm called Extended

Quantum Hierarchical state machine (EQHsm). They proposed support for actions

on transition, concurrency and history state. A pointer to action is passed as a

 88

parameter in the transition function. History state is represented as a pointer in the

event method. Concurrency is implemented by multiple communicating state

machines with wrapper states and special events.

 Gurp and Bosch [43] presented a design pattern called Finite State Machines

(FSM) framework, which models all the statechart elements as classes. States,

events, actions and transitions are represented as objects. The FSMContext class

holds a reference to the current state and all state-specific data (in a repository).

State is represented by a single class and contains a set of transitions. The

transition object has a reference to the target state and an action object. The

FSMContext responds to events and passes the events on to the current state. The

state object maintains a list of transition-event pairs. When an event is received the

corresponding transition is located and then executed. The transition object

executes the associated action and then sets the target state as the current state in

FSMContext. The structure of the FSMContext object is complex and contains a

large repository of objects. FSM framework generates code only for the finite state

machines and does not implement the hierarchical and concurrent substates. The

context repository does not provide any interface to update the state-specific data

so action classes can make uncontrolled changes to the data.

 Köhler et al. [44] presented a tool FUJABA [45] for code generation from UML

class and statecharts. Their approach adapts the idea of array based state table [34]

but uses an object-oriented implementation of the state table. FUJABA uses

objects to represent the states and attributes to hold the entry/exit and action

methods. The state objects are linked via transition objects. Each transition object

has an array of target states. The transition objects have their firing event name.

Additional links and attributes represent the nesting of complex states, history

states etc. Events are implemented as methods. The event methods create an event

object encapsulating the event name and possible parameter values. A library

function is used to interpret the table of the state and to react on events. This

 89

function is also responsible for issuing appropriate action methods and switching

to the resulting states. The hierarchical and concurrent states are handled by

flattening the statechart. The table look up is less efficient than a virtual function

call. The transition logic is less explicit and it is difficult to add actions to

accompany the state transitions.

Ran [46] proposed models for object-oriented design of state (MOODS). MOODS

are a family of design patterns that may be used to simplify the design and

implementation of objects with state-dependent behavior. An alternative technique

of selecting the optimal design among different state machine patterns, using

design decision trees (DDT) is proposed. Design decisions are fine-grained

elements of design. States can be represented as classes and events as methods.

The focus is primarily on generic problems such as complex object behavior, event

cause state changes, which are prerequisites to state design pattern [36].

7.4 Other Approaches to Implement Statechart

 In this section we will discuss approaches to implement statecharts which are

neither discussed in chapter 2 nor sections 7.2 and 7.3. These are different from the

ones we have discussed so far.

Mellor and Balcer [47] proposed the executable UML (xUML) methodology

which uses a specialized subset of UML notation for software development. The

xUML uses UML class diagram, statechart diagram and action language. An

application-independent software architecture is suggested which defines a set of

design decisions expressed as a set of rules to apply to an application to produce

the implementation of a system [48]. The architecture has a structure similar to

UML metamodel. A StateChart class is defined which holds a representation of

 90

statechart. One StateChart object is instantiated for each class that has a statechart.

An abstract base class ActiveInstance is created which captures the data and

behavior common to each object instance of context class. The StateChart class

captures the specification of state behavior while the ActiveInstance captures the

current state of each object instance. These architectural design decisions and the

applications (as stored in metamodel) are combined using a translation template

written in a special-purpose language. The model compilers use these templates to

generate the implementation code.

 Shlaer and Mellor [49] proposed an implementation of statecharts which is

based on a linked list of transitions. They use a subset of Harel’s statecharts [4].

UML statechart diagram has extended the Harel’s statechart to make it object-

oriented [1]. States are represented as data values and events as operations in the

context class with which statechart is attached. Transitions are represented as

objects. The Context class maintains an instance of a State Machine. The State

Machine object maintains a linked list of transition objects. Each transition object

knows an event ID, a source state and a target state. A transition object exists for

each combination of events and states, even for those events that are to be ignored.

On the occurrence of event, the context object traverses its list of transitions. The

transition object either returns the next state or informs context to ignore the event.

Actions are not provided for transitions. There is no support for hierarchy,

concurrency and entry/exit actions.

 Wasowski [50, 51] presented a hierarchical code generator called SCOPE [52].

SCOPE compiles a sublanguage of statecharts supported by visualSTATE [53] and

produces C language code. The visualSTATE statecharts are a subset of Harel’s

statecharts [4] incorporating most of the original statechart language including

concurrent states, history, internal transitions and other elements. These statecharts

are similar to UML statecharts. SCOPE uses flattening in which hierarchical

statecharts are converted into parallel Mealy machines and then code is generated.

 91

SCOPE’s hierarchy tree is represented in integer arrays. State addresses (array

indexes) are used as state identifiers. Transitions are stored in a simple hash table,

with events being hash keys. Each event has a linear list of transitions assigned.

 92

Chapter 8

Conclusion

 An object-oriented approach has been proposed to convert the UML class and

statechart diagram into implementation code. Our approach generates compact and

efficient executable code for the entire application model. The generated code

contains the structural as well as behavioral code for all the classes of the

application model.

 The statechart diagram, which is difficult to implement, can now easily be

implemented by using the collaborator object approach. In our approach, states in

the statechart diagram are represented as classes and transitions as operations

eliminating the need of using large conditional statements. All the behavior related

with a particular state is put into one object and this localizes the state-specific

behavior. Because all state-specific code lives in a state subclass, new states and

transitions can be added easily by defining new subclasses. Our approach

distributes behavior for different states across several state classes. This increases

the number of classes, but such distribution is actually good as introducing

separate objects for different states makes the transitions more explicit. This makes

the components of the statechart diagram explicit and the resulting code easier to

understand and maintain. Our approach implements the statechart semantics as

 93

faithfully as possible and ensures that the resultant code is still consistent with the

UML model.

 The proposed approach has been implemented in our system, JCode, which

automatically converts the UML class and statechart diagrams specifications into

Java code. The comparison with Rhapsody shows that the code generated by JCode

system is about 60% more efficient and about three times more compact than that

of Rhapsody. Our Code is also about 10% more compact and about 50% more

efficient than that of OCode.

 Our approach is an object-oriented approach and in the present study we have

used Java as the target language. However our approach is general so it can be

used to generate the low level code in other object-oriented languages. The code

generation engine has to be tailored to the target language as some of the features

are implemented differently in different object-oriented programming languages.

 94

Acknowledgments

 First and foremost, I would like to express my heartfelt gratitude to my

supervisor, Professor Jiro Tanaka, for his clear advice, invaluable guidance,

constant support and encouragement during all stages of this study. I was amazed

by both his insight and stamina. His kind gestures will never be forgotten.

 I would like to extend my sincere thanks to Dr. Nobuo Ohbo, Dr. Koichi Wada,

Dr. Hiroyuki Kitagawa and Dr. Kazuo Misue of University of Tsukuba for their

invaluable comments and suggestions.

 I am also obliged to Ministry of Education, Culture, Sports, Science and

Technology (Monbukagakusho), Japan and Japan Student Services Organization

(JASSO) for providing me financial assistance without which this study would not

have been possible.

 I am grateful to Dr. Buntaro Shizuki, Dr. Shin Takahashi and Dr. Motoki Miura,

for their support and timely help. I also owe thanks to several current and former

members of IPLAB members for their support and nice company.

 Special thanks to Ms. Simona Vasilache, Ms. Xiaoping Ying and Mr. Xuejun

Liu for their useful discussions, constructive criticism and nice company

throughout my stay in Japan.

 My sincere tributes are due to Chairman, Department of Computer Science,

Dean, Faculty of Natural Sciences and the Vice Chancellor, Quaid-i-Azam

University for granting me study leave to accomplish this doctoral program.

 95

Special thanks are due to all of my colleagues at Department of Computer Science,

Quaid-i-Azam University for their moral support.

 I wish to express my thanks to all my friends in Pakistan and Japan for their

good wishes, encouragement and prayers.

 I am highly obliged to my parents, brothers and sisters for their encouragement,

heartfelt support and benevolent prayers. They have been always a source of

inspiration and endless encouragement for me.

 This arduous work would not have been accomplished without the help and

support of my wife Fariha and our children, Rameen and Sarmad. I am especially

thankful for their understanding, moral support and love. Without them, I would

never have made it through the doctoral program. They helped me get through the

bad times and enjoy the good times. I dedicate this work to all of them with love

and affection.

 Finally, I am thankful to God for having granted me the skills and opportunities

that made this possible.

 96

Bibliography

[1] Object Management Group (OMG), Unified Modeling Language (UML)

specifications version 1.5, 2003. http://www.omg.org/

[2] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling Language:

User Guide”, Massachusetts: Addison-Wesley, 1999.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling Language:

Reference Manual Guide”, Massachusetts: Addison-Wesley, 1999.

[4] D. Harel, “Statecharts: A visual formalism for complex systems”, Science of

Computer Programming, vol. 8, no. 3, pp 231-274, Jun. 1987.

[5] G. Booch, “Object Oriented Design with Applications”, California:

Benjamin/Cummins, 1991.

[6] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorenson, “Object-

Oriented Modeling and Design”, New Jersey: Prentice-Hall, 1991.

[7] I. Jacobson, “Object-Oriented Software Engineering: A Use Case Driven

Approach”, Massachusetts: Addison-Wesley, 1992.

[8] International Business Machines (IBM) Corporation, Rational Unified

Process, 2003, http://www-306.ibm.com/software/awdtools/rup/

[9] P. Coad and E. Yourdan, “Object-Oriented Analysis”, New Jersey: Prentice

Hall, 1991.

[10] Philippe Desfray, “Object Engineering: The Fourth Dimension”,

Massachusetts: Addison-Wesley, 1994.

[11] Tigris.org, ArgoUML, http://argouml.tigris.org

[12] Gentleware AG, Poseidon for UML, http://www.gentleware.com

[13] Metamill Software, Metamill, http://www.metamill.com

[14] MicroTOOL, objectiF, http://www.microtool.de/objectif/

[15] No Magic Inc. MagicDraw, http://www.magicdraw.com

[16] Objecteering Software, Objecteering/UML, http://www.objecteering.com

 97

[17] A. S. Ran, “Modeling States as Classes”, in Proc. Technology of Object-

Oriented Languages and Systems Conference, 1994.

[18] A. Sane, and R. Campbell, “Object-Oriented State Machines: Subclassing,

Composition, Delegation, and Genericity”, ACM SIGPLAN Notices,

OOPSLA'95, vol.30, Austin, Texas, USA, 1995, pp. 17-32.

[19] I-Logix Inc., Rhapsody, http://www.ilogix.com.

[20] D. Harel, and E. Grey, “Executable Object Modeling with Statecharts”, in

Proc. of 18th International Conf. on Software Engineering, IEEE, March

1996, pp. 246-257.

[21] D. Harel, and E. Grey, “Executable Object Modeling with Statecharts”,

Computer, vol. 30, no. 7, 1997, pp. 31-42.

[22] D. Harel, and A. Namaad, “The STATEMATE Semantics of Statecharts”,

ACM Transactions on Software Engineering and Methodology, vol. 5, no. 4,

1996, pp. 293-333.

[23] J. Ali, and J. Tanaka, “Converting Statecharts into Java Code”, in Proc.

Fourth World Conf. on Integrated Design and Process Technology

(IDPT’99), Dallas, Texas, USA, 2000 (CD-ROM).

[24] J. Ali, and J. Tanaka, “An Object Oriented Approach to Generate Executable

Code from OMT-Based Dynamic Model”, Journal of Integrated Design and

Process Science, vol. 2, no. 4 1998, pp. 65-77.

[25] J. Ali, and J. Tanaka, “Implementing the Dynamic Behavior Represented as

Multiple State Diagrams and Activity Diagrams”, Journal of Computer

Science & Information Management (JCSIM), vol. 2, no. 1, 2001, pp. 24-34.

[26] I. A. Niaz and J. Tanaka, “Code Generation from UML Statecharts”, in Proc.

7th IASTED International Conf. on Software Engineering and Application

(SEA 2003), Marina Del Rey, USA, Nov. 2003, pp. 315-321.

[27] I. A. Niaz and J. Tanaka, “Mapping UML Statecharts to Java Code”, in Proc.

IASTED International Conf. on Software Engineering (SE 2004), Innsbruck,

Austria, Feb. 2004, pp. 111-116.

 98

[28] I. A. Niaz and J. Tanaka, “An Object-Oriented Approach To Generate Java

Code From UML Statecharts”, International Journal of Computer &

Information Science, vol. 6, no. 2, 2005 (accepted).

[29] M. Harada, T. Fujisawa, M. Teradaira, K. Yamamoto, and S. Hamada,

“Refinement of Dynamic Modeling of Some Automatic Layouting of Object

Oriented Design Schema and Reverse Engineering of Design Schema from

C++ Program”, in IPSJ Object-Oriented Symposium, Tokyo, Japan, 1996, pp

111-118.

[30] Sun Microsystems Inc., Java Technology, http://java.sun.com

[31] J. Rumbaugh, “OMT: The Object Model”, Journal of Object-Oriented

Programming, vol. 7, no. 8, 1995, pp. 21-27.

[32] J. Rumbaugh, “OMT: The Dynamic Model”, Journal of Object-Oriented

Programming, vol. 7, no. 9, 1995, pp. 6-12.

[33] J. Rumbaugh, “OMT: The Development Process”, Journal of Object-

Oriented Programming, vol. 7, no. 12, 1995, pp. 8-16.

[34] B. P. Douglass, “Real Time UML – Developing Efficient Objects for

Embedded Systems”, Massachusetts: Addison-Wesley, 1998.

[35] P. Metz, J. O’Brien and W. Weber, “Code Generation Concepts for

Statechart Diagrams of the UML v1.1”, Object Technology Group (OTG)

Conference, Vienna, Austria, June 1999.

[36] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:

Elements of Reusable Object-Oriented Software”, Massachusetts: Addison-

Wesley, 1995.

[37] S. M. Yacoub and H. H. Ammar, “A Pattern Language of Statecharts” in

Proc. Fifth Annual Conf. on the Pattern Languages of Program (PLoP 98),

Monticello, IL, USA, 1998, TR#WUCS-98-29.

[38] T. Tomura, S. Kanai, K. Uehiro and S. Yamamoto, “Developing Simulation

Models of Open Distributed Control Systems by Using Object-Oriented

Structural and Behavioral Patterns”, in Proc. 4th IEEE International

 99

Symposium on Object-Oriented Real-Time Distributed Computing (ISORC

2001), Magdeburg, Germany, 2001, pp. 428-437.

[39] T. Tomura, S. Kanai, K. Uehiro and S. Yamamoto, “Object-Oriented Design

Pattern Approach for Modeling and Simulating Open Distributed Control

System”, in Proc. IEEE International Conf. on Robotics and Automation

(ICRA 2001), Seoul, Korea, 2001, pp. 211-216.

[40] M. Samek and P. Montgomery, “State-Oriented Programming”, Embedded

Systems Programming, vol. 13, no. 8, 2000, pp 22-43.

[41] M. Samek “Practical Statecharts in C/C++”, Gilroy: CMP Books, 2002

[42] G. Pinter and I. Majzik, “Program Code Generation Based On UML

Statechart Models”, Periodica Polytechnica, vol. 47, no. 3, 2003, pp 187-204.

[43] J. V. Gurp and J. Bosch, “On the Implementation of Finite State Machines”,

in Proc. IASTED International Conf. on Software Engineering and

Applications, (SEA’99), Scottsdale, AZ, USA, 1999, pp. 172-178.

[44] H. J. Köhler, U. Nickel, J. Niere, and A. Zündorf, “Integrating UML

Diagrams for Production Control Systems”, in Proc. 22nd International Conf.

on Software Engineering (ICSE 2000), Limerick, Ireland, 2000, pp. 241-251.

[45] Fujaba Case Tool, http://www.fujaba.de/

[46] A. Ran, “MOODS: Models for Object-Oriented Design of State”, in Proc.

Conf. on the Pattern Languages of Program (PLoP 95), 1995.

[47] S. J. Mellor and M. J. Balcer, “Executable UML: A Foundation for Model-

Driven Architecture”, Massachusetts: Addison-Wesley, 2002.

[48] S. J. Mellor, “Automatic Code Generation from UML Models”, Journal of

C++ Report, June 1999.

[49] S. Shlaer and S. J. Mellor, “Object Lifecycles – Modeling The World in

States”, Massachusetts: Addison-Wesley, 1992.

[50] A. Wasowski, “On Efficient Program Synthesis from Statecharts”, in Proc.

ACM SIGPLAN Conf. of Languages, Compilers, and Tools for Embedded

Systems (LCTES’03), San Diego, USA, June 2003, pp. 163-170.

 100

[51] A. Wasowski, “Flattening Statecharts without Explosions”, in Proc. ACM

SIGPLAN Conf. of Languages, Compilers, and Tools for Embedded Systems

(LCTES’04), Washington DC., USA, June 2004, pp. 257-266.

[52] SCOPE: A statechart compiler, http://www.mini.pw.edu.pl/~wasowski/scope.

[53] IAR Systems, visualSTATE Case Tool, http://www.iar.com/Products/VS/

 101

Author Publications List

[1] I. A. Niaz and J. Tanaka, “Code Generation from UML Statecharts”, in Proc.

7th IASTED International Conf. on Software Engineering and Application

(SEA 2003), Marina Del Rey, USA, Nov. 2003, pp. 315-321.

[2] I. A. Niaz and J. Tanaka, “Mapping UML Statecharts to Java Code”, in Proc.

IASTED International Conf. on Software Engineering (SE 2004), Innsbruck,

Austria, Feb. 2004, pp. 111-116.

[3] I. A. Niaz and J. Tanaka, “An Object-Oriented Approach To Generate Java

Code From UML Statecharts”, International Journal of Computer &

Information Science, vol. 6, no. 2, 2005 (accepted).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

