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Abstract 
 

 

The emergence of Unified Modeling Language (UML) as a standard for modeling 

systems has encouraged the use of automated software tools that facilitate the 

development process from analysis through coding. In UML, the static structure of 

classes in a system is represented by a class diagram while the dynamic behavior 

of the classes is represented by a set of statechart diagrams. To facilitate the 

software development process, it would be ideal to have tools that automatically 

generate or help to generate executable code from the models. 

 

     In the present study, an effort has been made to find methods to automatically 

generate executable code from the UML class and statechart diagrams. An object-

oriented approach has been proposed to generate executable implementation code 

from UML class and statechart diagrams in an object-oriented programming 

language. The generated code contains the structural as well as behavioral code for 

all the classes of the application model. A new approach, collaborator object, has 

been proposed to implement the UML statechart diagram. States are represented as 

objects and events as their methods. The hierarchical and concurrent substates are 

implemented by using the concept of object composition and delegation. 

 

     An automatic code generating system, JCode, has also been developed that 

implements the proposed method and automatically generates executable Java code 

from the specifications of the UML class and statechart diagrams. A comparison 

with Rhapsody and OCode shows that the code generated by JCode is much more 

compact, efficient and readable than that of Rhapsody and OCode. 
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Chapter 1 
 
 
 
 

Introduction 
 
 
 
     Object-oriented software development matured significantly during the past ten 

years. The Unified Modeling Language (UML) [1, 2, 3] is generally accepted as 

the de facto standard modeling notation for the analysis and design of the object-

oriented software systems. UML is a graphical language for specifying the analysis 

and design of object-oriented software systems [2].  

  

  

1.1 Unified Modeling Language (UML) 
 

     The emergence of UML [1, 2, 3] as a standard for modeling systems has 

encouraged the use of automated software tools [12, 14, 15, 19, 24] that facilitate 

the development process from analysis through coding. UML provides several 

diagram types that can be used to view and model the software system from 

different perspectives and/or at different levels of abstraction. UML defines nine 

types of graphical diagrams namely, class diagram, object diagram, use case 

diagram, statechart diagram, activity diagram, sequence diagram, collaboration 

diagram, component diagram and deployment diagram. The two diagrams which 

become important in the design phase are class diagram and statechart diagram. 
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     A class diagram is a graphic view of the static structural model. It shows a set 

of classes, interfaces and their relationships. The main focus is on the description 

of the classes. Class diagrams are important for constructing systems through 

forward engineering.  

 

     In UML based object-oriented design, behavioral modeling aims at describing 

the behavior of objects using state machines. A state machine is a behavior that 

specifies the sequence of states an object goes through during its lifetime in 

response to events [2]. The UML statechart diagram visualizes a state machine. It 

contains states, transitions, events and actions. Statechart diagram addresses the 

dynamic view of a system. It is especially important in modeling the behavior of a 

class and emphasizes the event-ordered behavior of an object, which is particularly 

useful in modeling reactive systems. It focuses on changing states of a class driven 

by events. The semantics and notations used in UML statecharts mainly follow 

Harel’s statecharts [4] with extensions to make them object-oriented [1].  

 

 

1.2 Motivation 
 

     A model-system gap exists primarily due to the different levels of abstraction. 

Since visual modeling is getting more and more popular [1, 5, 6, 7], the automatic 

generation of the program code on the basis of high-level models is an important 

issue [42]. Benefits of high-level modeling and analysis are significantly enhanced 

if code can be generated automatically from a model such that the correspondence 

between the model and code is precisely understood. Object-oriented methods help 

developers analyze and understand a system, but the Achilles' heel of analysis and 

design methods has been the transition to code. Most of the object-oriented 

methodologies [5, 6, 7, 8, 9, 10] describe in sufficient detail the steps to be 

followed during the analysis and design phase, but fail to describe how the analysis 
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and design models of a system shall be converted into implementation code. A big 

problem in the development of a system through object-oriented methodologies is 

that, even after having created good models, it is difficult for a large fraction of 

software developers to convert the design models into executable code. It would be 

ideal to have tools that support the developer and automatically generate or help to 

generate executable code from the models. 

 

 

1.3 Goals and Objectives 
 

     The final goal of this research is to automatically generate implementation code 

from the UML class and statechart diagrams. The general objectives are: 

 

1. To find an approach to generate implementation code from UML class 

and statechart diagram in an object-oriented programming language 

such as Java [30]. 

2. To implement the proposed approach and develop a system for 

automatic Java code generation from UML class and statechart 

diagrams. Our code generation approach and tool will help in bridging 

the gap between the design and development phase and will support 

the developers in the software development process.  

 

 

1.4 Organization 
 

     The thesis is organized as follows. Chapter 2 provides background about 

various approaches to implement statecharts. Our proposed approach, Collaborator 

Object, for implementing UML statechart diagram is also described here. Chapter 

3 discusses the implementation of the UML class and statechart diagram with our 
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code generation approach. In Chapter 4 the automatic code generating system 

JCode, which implements our proposed approach, is described in detail. Chapter 5 

describes other features of JCode system that includes implementation of fork, join 

and history states. In Chapter 6, code generated by JCode is compared with 

Rhapsody and OCode. In Chapter 7, an overview of the related work is presented. 

Finally, in Chapter 8, the main results of our research are summarized. 
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Chapter 2 
 
 
 
 

Approaches to Implement Statechart 
 
Diagram 
 
 
 
     UML is a modeling language, which consists of semantics and graphical 

notation. For every element of its graphical notation there is a specification that 

provides a textual statement of syntax and semantics. Implementing the semantics 

correctly is a challenging task, as the programming languages do not directly 

support them. The UML statechart diagrams include many concepts that are not 

present in most popular object-oriented programming languages, like C++ or Java, 

e.g. events, states, history states etc. States can be represented as scalar variables or 

they can be represented as objects. Events can be represented as objects or as 

methods. 

 

     Ran [17] examined techniques to model state as classes. Sane and Campbell 

[18] proposed that states could be represented as classes and events as operations. 

Some model elements, like history states, can be implemented in many different 

ways. This means there is not a one-to-one mapping between a statechart and its 

implementation. Table 1 summarizes the transformation rules for statecharts. 
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Table 1  UML to Java transformation for statechart 

 

UML One Approach [19] Alternate Approach [23]

State Scalar variable Object 

Event Object Method 

Action Simple statement Method 

Entry / Exit Actions Objects Method 
 

 

     Most of the class diagram concepts have a one-to-one mapping with the 

programming language concepts so the class diagram implementation is relatively 

straightforward. Class diagrams can be implemented directly in a programming 

language supported concepts like classes and objects, composition and inheritance. 

The transformation rules for class diagram are summarized in Table 2. 

 

Table 2  UML to Java transformation for class diagram 

 

UML Java [30] 

Class Class 

Interface Interface 

Attribute Attribute 

Properties on attributes Attribute modifiers 

Operation Method 

Properties on operations Method modifiers 
Realization between classes and 
interfaces Implements 

Generalization between classes and 
interfaces Extends 

Association between classes Reference attributes in both classes 
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     We will now discuss some of the approaches to implement statechart diagram. 

We will use the statechart for an air conditioner, as shown in Figure 2.1, to show 

the code generated by different approaches. 

 

 
 

Figure 2.1 Statechart for air conditioner 

 

 

2.1 Switch Statement 
 

     The most common and earliest technique to technique to implement statechart 

is the switch statement. Based on the current active state, it performs a jump to the 

code for processing the event. States are represented as data values. A single scalar 

variable, called a state variable, stores the current active state. One switch 

statement is used for each event. The state variable is used as a discriminator in the 

switch statement inside each event method of the context class [34]. The correct 

case is selected on the value of the state variable. Each case clause in the switch 

statement can implement the various actions and activities for the specific state. All 

the behavior of the statechart is put in one single class. This technique works well 

for classical “flat” state machines. The nested states are implemented via flat states 

[34]. The code generated by this approach for the air conditioner statechart is 

shown in Figure 2.2. 
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Figure 2.2 Code generated by switch statement approach 

 

     AirCon is the context class and all the behavior of the statechart is put in this 

context class. The states are represented as scalar constants of type int. The state is 

a scalar variable and holds the current active state. The on_subState holds the 

current active substate of the On composite state. The state and on_subState are 

initialized to default states in the constructor of the context class. The events are 

implemented as methods. Transition searching is performed using a switch 

statement. Each case clause of the switch state implements the state-specific 

behavior and contains the event action, entry/exit actions and the next state. The 

actions are implemented as simple statements. The substates of the On composite 

state consume the events targeted to the composite state or its substate. The entry 

class AirCon { // context class 
  public static final int off  = 1; 
  public static final int on = 2; 
  public static final int cooler = 3; 
  public static final int heater  = 4; 
  public int state;   // state variable 
  public int on_subState; 
AirCon() {  //constructor 
  state = off; 
  on_subState = cooler; 
 } 
public void modeBut() {  // event method 
  switch (state) { 
          case off :  
                  break; 
          case cooler :  
                  setHeater;    // action 
                  // exit actions 
                  on_subState = Heater; 
                  state = on_subState; 
                  // entry actions 
                  break; 
          case heater :  
                  setCooler;   // action 
                  // exit actions 
                  on_subState = Cooler; 
                  state = on_subState; 
                  // entry actions 
                  break; 
          default :  
                  break; 
 } 

public void powerBut() {  // event method 
  switch (state) { 
          case off :  
                  setOn;   // action 
                  // exit actions  
                  state = on_subState; 
                  // entry actions 
                  break; 
          case cooler :  
                  setOff;   // action 
                  // exit actions 
                  state = off; 
                  // entry actions 
                  break; 
          case heater :  
                  setOff;    // action 
                  // exit actions 
                  state = off; 
                  // entry actions 
                  break; 
          default :   
                  break; 
 } 
………… 
} 
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and exit actions of a state have to be duplicated in every event method. In the 

powerBut event method, the code is duplicated for the cooler state and the heater 

state, as one of these states will be active when the composite state is active. 

 

     Switch statement provides a simple and straightforward implementation of the 

statechart concepts. The structure of the statechart is hard coded into a single class. 

There is a lot of code duplication and reuse of code is very difficult. Manual 

coding of entry/exit actions and event actions is, however, cumbersome, mainly 

because code pertaining to one state becomes distributed and repeated in many 

places. This makes it difficult to modify and maintain when the topology of state 

machine changes. It does not provide explicit means for reflecting the transition 

structure, state hierarchy and entry/exit actions associated to states. Implementing 

and maintaining the code generated by following this approach is error-prone and 

labor intensive, but usable in automatic code generators where the code 

maintenance is substituted by forward engineering. I-Logix’s Rhapsody [19] 

follows an approach similar to this approach to implement UML statechart diagram. 

 

 

2.2 Helper Object 
 

     In [23], the concept of a helper object is introduced, which is an object-oriented 

replacement of the switch statement. It puts each case clause in a separate object. 

The helper object handles all the state-specific requests forwarded to it by the 

multi-state domain object (context). The behavior of the multi-state domain object 

is split into context and a state. The context responds differently to each external 

message depending upon its current state. Helper object puts the behavior 

associated with a particular state into one object. The helper object encapsulates all 

the state-specific behavior of the context. The helper object represents the current 

state of the context object and implements the behavior specific to the current state. 
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The context object delegates all external messages to its helper object and the 

helper objects responds to the message on behalf of the domain object. The state 

object is created temporarily. When the state of the domain object changes, a new 

helper object, implementing the behavior specific to the new state, replaces the old 

one. The source state is responsible for the change of state of the helper object. 

 

     Events become methods in the context class. The context has a method for each 

event of the statechart. Instead of implementing the event method, the context 

object delegates all requests (events) for processing to the current state object. The 

transition searching is performed using polymorphism. Separating behavior into 

disparate objects makes sense when the separation takes advantage of 

polymorphism. Polymorphism allows two objects to be treated identically, even 

though the objects implement these methods in quite different ways. The transition 

to a different state means replacement of the current state object by another state 

object. The actions become methods in the context class. 

 

     An abstract state class is used for defining the interface for encapsulating the 

behavior associated with a particular state of the context. The abstract state class 

declares an interface common to all state classes and its purpose is to make all the 

state classes able to accept every event of the statechart. The interface for internal 

events and entry /exit actions are also declared in this abstract class. 

 

    The state object contains state-specific attributes and implementation for state-

dependent behavior. Each state in the statechart diagram becomes a class and is 

derived from the abstract state class. All the behavior associated with a particular 

state is put in this state class. Introducing separate objects for different states 

makes the transitions more explicit.  

 

     The code generated by this approach for the air conditioner statechart is shown 

in Figure 2.3. 
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Figure 2.3 Code generated by helper object approach 

 

     The AirCon class contains the helper object ac, which maintains the current 

state. AirCon also maintains two references history and lastActive for maintaining 

the history state of the composite state On. The helper object and history references 

are initialized in the constructor of the AirCon class. The events, powerBut and 

modeBut, become methods in the AirCon class. The bodies of these methods 

contain only one statement, which delegates the event for processing to the helper 

object. All the actions become methods in the context class. An abstract state class 

AirConState, is defined for declaring an interface. The top-level states Off and On 

are derived from the AirConState class. The event methods in these state classes 

public class AirCon {  // context  
  public  AirConState  ac; // helper object 
  public  int history; 
  public  int lastActive; 
AirCon() {  //constructor 
  ac = new Off(); 
  history = 0; 
  lastActive = 0;  } 
// delegates events to helper object 
public void powerBut() {  ac.powerBut(); } 
public void modeBut() {   ac.modeBut(); } 
// All actions become methods 
public void setOn() {………} 
public void setOff() {………} 
………} 
public class AirConState { 
  public void entry() {}; 
  public void exit() {}; 
  public void powerBut() {}; 
  public void modeBut() {}; } 
public class Off extends AirConState { // state 
  public void powerBut() {   AirCon.setOn(); 
   AirCon.ac.exit(); 
   if (AirCon.history == 0) { // history first time 
     AirCon.ac = new Cooler(); 
     AirCon.history = 1; } 
   else {  // recalling history state 
     switch(AirCon.lastActive) { 
       case 0 :  AirCon.ac = new Cooler();break; 
       case 1 :  AirCon.ac = new Heater();break; }} 
   AirCon.ac.entry(); } 
 } 

class On extends AirConState { // composite 
 
public void entry() {      } 
public void exit()  {    } 
 
public void powerBut() {  // outgoing transition 
  AirCon.setOff;   
  AirCon.ac.exit();  
  AirCon.ac = new Off(); 
  AirCon.ac.entry(); } 
} 
// state hierarchy is implemented by Inheritance 
// substates are subclasses from composite class 
class Cooler  extends On {  // substate  
 public void modeBut() { 
  AirCon.setHeater;   
  AirCon.ac.exit();  
  AirCon.ac = new Heater(); 
  AirCon.ac.entry();  
  AirCon.lastActive = 1; 
  } 
} 
 
class Heater  extends On {  // substate 
 public void modeBut() { 
  AirCon.setCooler;   
  AirCon.ac.exit();  
  AirCon.ac = new Cooler(); 
  AirCon.lastActive = 0; 
  AirCon.ac.entry();  
  } 
} 
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implement the behavior. The state objects define the transitions. On transition, first 

of all the event action is executed followed by the exit actions of the current state. 

The new object for the next state is created and its reference is stored in the helper 

object. Then the entry action of the new state is executed. The implementation of 

history state is not encapsulated in the composite state On but rather it is 

distributed among state objects and the domain object AirCon. 

 

     The state hierarchy is implemented by using inheritance. The statechart 

structure becomes the class hierarchy. The substates, Cooler and Heater, become 

subclasses of the superstate class On. The super class implements the behavior 

specific to the super state and the subclasses implement the behavior specific to the 

substates. The reference lastActive, which represents the most recent active 

substate, is updated each time the substate is exited. The super class never becomes 

active, rather the current active substate handles the transitions for the super state 

class as they inherit all the methods of the superstate class. The problem with this 

approach is that it generates code only for the domain class with which the 

statechart is attached. OCode [24, 25] used a similar approach to implement Object 

Modeling Technique (OMT) [6, 31, 32, 33] dynamic model.  

 

     Figure 2.4 shows the implementation structure of the helper object approach for 

the air conditioner example of Figure 2.1. The context class AirCon has a one way 

association with the abstract state class AirConState. The association is navigable 

from the AirCon class only. The AirCon class has one reference attribute ac to 

access the attributes and methods of AirConState class or its child classes. 

AirConState has a generalization relationship with the two top level states Off and 

On. The top level states inherit all the properties and methods of the parent class 

AirConState. The composite state On has a generalization relationship with the 

substates Cooler and Heater. The Heater and Cooler substate classes are derived 

from the parent class On. 
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Figure 2.4 Implementation structure of helper object approach 

 

     The helper object approach is the object-oriented implementation of the UML 

statechart diagram. It is very a very attractive and natural implementation of the 

statechart concepts. It eliminates the code redundancy and produces reusable code. 

The problem with this approach is that it has instantiation cost for every transition 

as it uses temporary state objects. On every transition, a new state object is created 

which replaces the current state in the helper object. 

 

 

2.3 Collaborator Object 
 

     Although helper object provides a better solution than switch statement for 

implementing statechart diagram, we believe that some more improvements can be 

made by using different object-oriented techniques. Our objective is to support the 

developer in the development phase. 

 

     Similar to helper object, in our approach for implementing statechart, the 

behavior of the context class is split into context and a state. The context object, 

the instance of the main class with which the client communicates, aggregates a 
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collaborator object that is used to represent the behavior in one of its states. The 

context object defines the interface to clients. The collaborator object encapsulates 

all the state-specific behavior of the context. The context object maintains a 

collaborator object that points to an instance of current active state object. We have 

used more persistent and permanent objects. The context object maintains 

references of all the state objects and they are created once in the constructor of the 

context object. The instantiation cost is paid only once. On transition, the context 

class is responsible for setting the new state by changing the state reference in the 

collaborator object. The states are represented as objects and implement state-

specific behavior. 

 

     The events are represented as methods. The context object delegates all events 

to the collaborator object for processing. State transitions are accomplished by 

changing the collaborator object with the reference of next state. No new object is 

created. Transition searching is performed using polymorphism. The actions in the 

transitions of a state machine perform operations on data in the system. We 

consider action as a message that performs operations on the data of the context 

object so each action of the statechart becomes a method in the context class.  

 

     An abstract state class is defined for defining the interface to state classes. The 

name of the abstract state class is derived from the context class name and State is 

added to it. Each state in the statechart diagram becomes a class and is derived 

from the abstract state class. The name of the state becomes the name of the class. 

All the behavior associated with a particular state is put in this state class. The state 

object contains state-specific attributes and implementation for state-dependent 

behavior. Each transition from a state becomes a method in the corresponding state 

class in order to provide a uniform and convenient way of invoking some services 

on the context object. Internal transitions and entry/exit actions are owned by their 

containing states so they are implemented as methods in the corresponding state 

class. If-then statement is used to check whether the guard condition is satisfied. 
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All the state-specific code resides in one class. The logic that determines the state 

transitions is partitioned between the state classes. Methods in the state do not need 

conditional analysis and have no concern for processing in other states. 

Encapsulating each state transition in a class elevates the idea of an execution state 

to full object status. Introducing separate objects for different states makes the 

transitions more explicit. That imposes structure on the code and makes its intent 

clear.  

 

     The composite states containing hierarchical or concurrent substates are 

implemented by using the concept of object composition and delegation. Object 

composition is defined dynamically at runtime through objects acquiring 

references to other objects. New functionality is obtained by composing objects to 

get more complex functionality. Object composition keeps each class encapsulated 

and there are fewer dependencies. Any object can be replaced at runtime by 

another as long as it has the same type. Delegation is a way of making object 

composition powerful for reuse. The main advantage of delegation is that it makes 

it easy to compose behavior at runtime and to change the way objects are 

composed. The behavior of the composite state is split into composite state and its 

substate. The composite state aggregates a collaborator object that is used to 

represent the behavior in one of its substates. The composite state object maintains 

a collaborator object that points to an instance of current active state substate. 

Events that have its substate as target are delegated to collaborator object for 

processing. The composite state class is responsible for changing the next substate 

in its collaborator object. Substates implements behavior specific to substates and 

are derived from a common interface class (each method in this interface 

corresponds to an event) that declares handler functions for the events received by 

the composite state class. The code generated by our approach for the air 

conditioner statechart is shown in Figure 2.5. 

 

 



 24

 
 

Figure 2.5 Code generated by collaborator object approach 

 

    The context class, AirCon, maintains the collaborator object state, which points 

to the current active state. AirCon maintains references for all the state objects, Off, 

On, Heater and Cooler. They are created once in the constructor of AirCon. The 

state object is also initialized to default state in the constructor. The powerBut and 

modeBut events become methods in the context class. AirCon object delegates the 

event for processing to the state object. All the actions, setOn, setOff, setHeater 

and setCooler, become methods in the context class AirCon. 

 

     AirConState is the abstract state class. It maintains a reference airCon to access 

the context class. The Off and On state classes are derived from the AirConState 

class AirCon {  // context class 
  public AirConState  state;  // collaborator object 
  public  Off   offState; 
  public  On   onState; 
  public  Cooler   coolerState; 
  public  Heater   heaterState; 
AirCon() {  //constructor 
  offState = new Off(this); 
  onState = new On(this); 
  coolerState = new Cooler(this,onState); 
  heaterState = new Heater(this,onState); 
  state = offState // setting default state  } 
      // setting the new state 
public void setState(AirConState st) { 
  state = st; 
  state.entry();  } 
public void powerBut() {  state.powerBut(); } 
public void modeBut() {  state.modeBut(); } 
      // All actions become methods 
public void setOn() {………} 
public void setOff() {……….} 
………} 
 class AirConState {  // abstract state class 
  public AirCon  airCon; // context reference 
  public void entry() {}; 
  public void exit() {}; 
  public void powerBut() {}; 
  public void modeBut() {}; } 
class Off extends AirConState {  // state class 
  public void powerBut() {   
    airCon.setOn();   exit(); 
    airCon.setState(airCon.onState); }  } 

class On extends AirConState { // composite state
private AbsOnState subState;//collaborator object
private AbsOnState  onHistory; 
private int hist =0; 
public void entry() {  
   if (hist > 0)   // implementing history 
        subState = onHistory; 
   else  {subState = airCon.coolerState; hist = 1;} 
   subState.entry();  } 
public void exit()  {  onHistory = subState; } 
public void powerBut() {  // outgoing transition 
  airCon.setOff();  
  subState.exit();  exit();  
  airCon.setState(airCon.offState); } 
       // delegating substate events 
public void modeBut() { subState.modeBut(); } 
      // setting the next substate 
public void setSub(AbsOnState sub) { 
   subState  = sub;   subState.entry();  } …….} 
class AbsOnState { // abstract composite state  
  public AirCon    m_context; 
  public On     s_context; 
/* Empty declarations for entry(), exit() and all 
events methods of subclasses of AbsOnState*/ } 
class Cooler extends AbsOnState {  // substate 
 public void modeBut() { m_context.setHeater(); 
   exit(); 
   s_context.setSub( m_context.heaterState); }} 
class Heater extends AbsOnState { 
 public void modeBut() { m_context.setCooler(); 
   exit(); 
   s_context.setSub( m_context.coolerState); }} 



 25

class. The state classes implements the state-specific behavior. In our approach, the 

context object defines the transitions. On handling the transitions, the current state 

object first executes the associated action with the transition followed by the exit 

action of the current state and then calls the setState() method of the context object 

AirCon to set the new state. In the setState() method, no new object is created, the 

state object is simply updated with the reference of the new state. The entry action 

of the new state is also executed in the setState() method. The state object is 

responsible for specifying the successor state. Decentralizing the transition logic in 

this way makes it easy to modify or extend the logic by defining new state 

subclasses. 

 

     The state hierarchy is implemented by object composition and delegation. The 

composite state object, On, maintains two references with private visibility, 

collaborator object Substate and onHistory, for maintaining the current active 

substate and the history state. The onHistory reference is used to set the active 

substate in the entry() method of the composite state On, whenever the composite 

becomes active. The onHistory is adjusted to the last active substate in the exit() 

method of the composite state. In this way the implementation of history state is 

encapsulated in the composite state. The composite state remains in control all the 

time. If the target of the incoming transition is a substate, then it will delegate the 

event to the collaborator object. The composite state On, is responsible for defining 

the transitions in the setSub() method. The substate specifies the successor substate. 

An abstract composite class AbsOnState is defined which contains empty 

declarations for entry/exit actions and all the event methods, which are specific to 

the substates of the On composite state. The substates Cooler and Heater are 

derived from abstract composite state class AbsOnState. The substates implement 

the event methods targeted to the substates.  
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Figure 2.6 Implementation structure of collaborator object approach 

 

     Figure 2.6 shows the implementation structure of our approach for the air 

conditioner statechart as shown in Figure 2.1. The context class AirCon has a 

bidirectional association with the abstract state class AirConState. The object of 

one class can navigate the object of the other class. The AirCon class has the 

reference state object to access the event methods of the state object. The 

AirConState contains a reference airCon to the context object. The state objects, 

Off and On, inherit this reference to access the methods of the AirCon context 

object. The AirConState has a generalization relationship with the two top level 

state Off and On. The Off and On states become the child classes of the parent class 

AirConState and inherit all the attributes and methods of the parent class. The 

abstract composite state class AbsOnState has associations with AirCon and On. It 

contains two references, m_context and s_context, one to access the main context 

class AirCon for executing the event actions and the other one to access the super 

context class On, for changing the next substate. The association between context 

AirCon class and the AbsOnState is in one direction and is navigable from the 
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AirConState class only. The association between AbsOnState and On class is 

bidirectional and both classes contain a reference attribute to access the objects of 

the other class. The AbsOnState has a generalization relationship with the substates 

Cooler and Heater. The substates classes are derived from the parent class 

AbsOnState. 

 

     The collaborator object approach for implementing statechart diagram provides 

better encapsulation and produces more reusable code. 
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Chapter 3 
 
 
 
 

Combining Class Diagram And 
 
Statechart Diagrams 
 
 
 
     A system consists of multiple statechart diagrams, each of which shows the 

behavior of a particular class of objects contained in the class diagram of the 

system. In this chapter, we demonstrate our code generation approach from the 

UML class and statechart diagrams. 

 

 

3.1 The Dishwasher System 
 

     We present an example of the Dishwasher system to show our code generation 

approach. Figure 3.1 shows the static structure of the Dishwasher system. The 

Dishwasher system consists of five classes, namely Dishwasher, Jet, Tank and 

Heater. The Dishwasher class has one way aggregation relationships with Jet, 

Tank and Heater classes. Aggregation represents a whole/part relationship. The 

Dishwasher represents the “whole” and Jet, Tank and Heater represent the “parts”. 

The Dishwasher class has four attributes namely, cycle, rinseTime, washTime and 

dryTime of type int. 
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Figure 3.1 Class diagram for the dishwasher system 

 

     The dynamic behavior of the Dishwasher class is specified in the statechart as 

shown in Figure 3.2. It has two top-level states PowerOff and PowerOn. These 

states are activated alternatively whenever a powerBut event occurs. A transition 

from the solid circle to a state shows that the state is the default state. Initially, the 

Dishwasher is in the default state PowerOff, where it accepts the powerBut event. 

The dishwasher reacts on such an event by switching from the PowerOff state to 

the PowerOn state.  

 
     The PowerOn state is a composite state with two concurrent regions Active and 

Mode. These regions become active at the same time whenever the PowerOn state 

gets activated. Each of the concurrent regions has a number of sequential substates. 

Only one of the sequential substates becomes active at a given time. Whenever 

PowerOn state becomes active, DoorClosed in the Active region and Normal state 

in the Mode region become active at the same time as they are the default states in 

each of the corresponding concurrent regions of the PowerOn composite state.
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Figure 3.2 Statechart of Dishwasher class 

 

    While in PowerOn state, on close or open event the Dishwasher switches to the 

next sequential state in the Active region. The DoorClosed substate is a composite 

hierarchical state containing Stop, Filling, Rinsing, Washing, Draining and Drying 

sequential substates. When the DoorClosed state is active, exactly one of its 



 31

sequential substates is also active at the same time. On open event the dishwasher 

switches to DoorOpen state in the Active region. On close event, it switches into 

the history state of the DoorClosed state and recalls the last active substate of the 

DoorClosed state. A statechart describes the dynamic aspects of an object whose 

current behavior depends on its past. A statechart in effect specifies the legal 

ordering of states an object goes through its lifetime. History state allows a 

composite state that contains sequential substates to remember the last substates 

that was active in it prior to the transition from the composite state. Similarly, on 

intMode, normMode or quickMode event, the Dishwasher switches to the next 

sequential substate in the Mode region. 

 

     The dynamic behavior of the Tank class is specified in the statechart as shown 

in Figure 3.3. It has four top-level states Empty, Fill, Full and Drain. These states 

are activated alternatively whenever a tankFill, tankFull, tankDrain, or tankEmpty 

event occurs. Initially, the Tank is in the default state Empty, where it accepts the 

tankFill event. The Tank reacts on such an event by switching from the Empty state 

to the Fill state. 

 

 
 

Figure 3.3 Statechart of Tank class 
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     The dynamic behavior of the Jet class is specified on the statechart as shown in 

Figure 3.4. It has two top-level states Idle and Running. Initially, the Jet is in the 

default state Idle, where it accepts the jetOn event. The Jet reacts on such an event 

by switching from the Idle state to the Running state. The Running state is a 

composite hierarchical state containing two sequential substate Spraying and 

Pulsing. Only one of the sequential substates becomes active at a given time. 

Whenever Running state becomes active, Spraying state becomes active at the 

same time as it is the default state of the composite Running state. While in 

Running state, on jetPulse event, the tank switches to the next sequential substate 

Pulsing. On jetOff event the Jet switches back to Idle state. 

 

 
 

Figure 3.4 Statechart of Jet class 

 

 

 
 

Figure 3.5 Statechart of Heater class 
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     The dynamic behavior of the Heater class is specified in the statechart as shown 

in Figure 3.5. It has two top-level states Off and On. Initially, the Heater is in the 

default state Off, where it accepts the heaterOn event. The heater reacts on such an 

event by switching from the Off state to the On state. On heaterOff event it 

switches back to the Off state.  

 

 

3.2 Combining Class and Statechart Diagrams 
 

     Many object-oriented CASE tools (ArgoUML [11], Poseidon [12], Metamill 

[13], objectiF [14], MagicDraw [15], Objecteering [16] etc.) generate header files 

from the class diagrams. Code generation from only the class diagram generates a 

limited skeleton code consisting of class attributes and method signatures. It 

provides the framework code for the object structure of a system. The generated 

code is incomplete and cannot be executed. Based on the partial models of object 

dynamics, developers then explicitly program object behavior and communications 

in the target language to make it executable.  

 

     Code generation from statecharts diagrams only generates the executable 

behavior code for a particular object. It generates code for one class only with 

which the statechart is attached. The developer has to explicitly join this code with 

other parts of the application to make the executable code for the entire application 

model. In [26] and [27], the code generated by our approach is only for the class 

with which the statechart is associated and the code generation for the class 

diagrams containing other classes of the application model is not considered. The 

generated code is incomplete.  

 

     In [28] and the present study, we have used the behavioral approach which is 

different from the approach of [26] and [27]. In this approach, we have combined 
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class diagrams together with the statechart diagrams for complete code generation 

of the entire application model. Combining class and statechart diagrams broadens 

the application field and covers a wider area by including static as well as 

behavioral information. We can now handle more complex problems containing 

more than one statechart and more complex statechart diagrams. Our approach 

generates code for the structural model as well as the behavioral code. 

 

     In our approach, an application class is generated in a separate file. All 

instances of classes in the class diagram are defined in the application class. The 

object instances are created once in the constructor of the application class. It also 

contains the main() method, which serves as an entry point for the application. The 

initialization code is also generated in the main() method. Separate files, containing 

the implementation code for each class appearing in the class diagram, are 

generated. If there is no statechart attached with the class then the generated code 

contains only the class attributes, attributes for association with other classes and 

the methods signatures. The behavioral aspects of a class are specified in the 

attached statechart. If a class has an associated statechart then the generated code 

contains the behavior implementation for the context class in addition to the class 

attributes, association attributes and method signatures. In the same file the code 

for the state classes of the statechart is also generated according to the collaborator 

object approach, as described in chapter 2. We have put the structural and 

behavioral code for a class in one Java file. The generated code is executable and 

contains all the information given in the application model.  
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Figure 3.6 Overview of the JCode system 

 

     The JCode system is developed, which automatically generates the executable 

Java [30] code from the specifications of the UML class and statechart diagrams 

using our code generation approach. Figure 3.6 shows the overview of the JCode 

system. The input to the system is the class and statechart diagrams specifications 

in Design Schema List Language (DSL) [29]. DSL is a specification language to 

represent class and statechart diagram in an understandable text format and to 

facilitate data exchanges among tools and members of the group. The output of the 

system is the executable Java [30] code.  

 

     We will demonstrate our code generation approach by generating code for the 

dishwasher system as shown in Figure 3.1. The JCode system works in three major 

modules, namely class diagram module, statechart module and the code generation 

module. Following is the brief description of each of the modules. 
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3.2.1 Class Diagram Module 
 

     The first input to the JCode system is the specifications of class diagram in DSL 

format. Figure 3.7 shows the class diagram of dishwasher system in DSL format. 

 

 
 

Figure 3.7 Class diagram specifications of dishwasher system in DSL format 

 

     The class diagram module reads the specifications of the class diagram, given in 

DSL format, and identifies various components of the class diagram and stores 

them in a table of classes. Nodes in DSL represent the classes. All the information 

about a class which includes name of the class, its attributes and method headers is 

stored. Arcs in DSL represent the relationships between classes. All the 

information about the relationship is also stored in the table. The class diagram 

module then processes the class table and extracts the statechart DSL filenames 

and passes this information to the statechart module to process the associated 

statechart diagrams. Figure 3.8 shows the statechart DSL filenames for classes of 

dishwasher system passed to the statechart module by the class diagram module. 

 

 

OOD (g1)[nodes{n1,n2,n3,n4},arcs{a1,a2,a3},oodAttr(name:DishwasherAppl)]; 
 
OODN(n1)[loc(200:10),size(90:110),oodnAttr(name:Dishwasher,(access+,dateType:int,name: 
cycle), (access+,dateType:int,name:rinseTime), (access+,dateType:int, name:washTime), 
(access+,dateType:int,name:drytime),interface:Dishwasher.dsl)]; 
OODN(n2)[loc(10:40),size(90:60),oodnAttr(name:Heater,interface: Heater.dsl)]; 
OODN(n3)[loc(400:40),size(90:60),oodnAttr(name:Jet,interface: Jet.dsl)]; 
OODN(n4)[loc(200:180),size(90:60),oodnAttr(name:Tank,interface: Tank.dsl)]; 
 
OODA(a1)[from(n2,side:RIGHT,off:30),to(n1,side:LEFT,off:55),oodaAttr(arcType:aggr,forwa
rdMult:1, reverseMult:0)]; 
OODA(a2)[from(n3,side:LEFT,off:40),to(n1,side:RIGHT,off:65), oodaAttr(arcType: aggr, 
forwardMult:1, reverseMult:0)]; 
OODA(a3)[from(n4,side:TOP,off:45),to(n1,side:BOTTOM,off:45), oodaAttr(arcType : aggr, 
forwardMult:1, reverseMult:0)]; 
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Class ID Class Name Statechart DSL Filename 

n1 Dishwasher Dishwasher.dsl 
n2 Heater Heater.dsl 
n3 Jet Jet.dsl 
n4 Tank Tank.dsl 

 

Figure 3.8 Statechart DSL filenames for classes of dishwasher system 

 

3.2.2 Statechart Module 
 

      The statechart module receives the statechart DSL filenames from the class 

diagram module and it then reads the corresponding input statechart DSL file and 

records the information of the statechart into a state table, thus transforming the 

information from DSL format to a table format. Figure 3.9 shows the statechart 

specifications of the Dishwasher class (Figure 3.2) of the dishwasher system in 

DSL format. 

 

 
Figure 3.9 Statechart specifications of Dishwasher class in DSL format 

OSTD (g2)[nodes{n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,n14,n15,n16,n17,n18,n19}, 
arcs{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20}]; 
 
OSTDN(n1)[loc(15:15),size(20:20),ostdnAttr(name:START)]; 
OSTDN(n2)[loc(10:100),size(70:50),ostdnAttr(name:PowerOff)]; 
OSTDN(n3)[loc(160:10),size(460:720),ostdnAttr(name:PowerOn,concurrent{n4,n15})]; 
OSTDN(n4)[loc(160:30),size(460:350),ostdnAttr(name:Active,substates{n5,n6,n14})]; 
OSTDN(n5)[loc(170:60),size(20:20),ostdnAttr(name:START)]; 
OSTDN(n6)[loc(225:30),size(240:300),ostdnAttr(name:DoorClosed,sequential{n7,n8,n9,n10, 
n11,n12,n13})]; 
OSTDN(n7)[loc(410:50),size(30:25),ostdnAttr(name:HISTORY)]; 
OSTDN(n8)[loc(390:90),size(70:50),ostdnAttr(name:Stop)]; 
………………………………………………………………. 
OSTDA(a1)[from(n1,side:BOTTOM,off:10),to(n2,side:TOP,off:30)]; 
OSTDA(a2)[from(n2,side:RIGHT,off:10),to(n3,side:LEFT,off:90),ostdaAttr(name:powerBut)]
OSTDA(a3)[from(n3,side:LEFT,off:110),to(n2,side:RIGHT,off:45),ostdaAttr(name:powerBut)
OSTDA(a4)[from(n5,side:RIGHT,off:10),to(n6,side:LEFT,off:35)]; 
OSTDA(a5)[from(n14,side:LEFT,off:10),to(n7,side:RIGHT,off:15),ostdaAttr(name:close)]; 
OSTDA(a6)[from(n6,side:RIGHT,off:70),to(n14,side:LEFT,off:35),ostdaAttr(name:open)];…
OSTDA(a7)[from(n7,side:BOTTOM,off:15),to(n8,side:TOP,off:35)]; 
OSTDA(a8)[from(n8,side:BOTTOM,off:35),to(n9,side:TOP,off:35),ostdaAttr(name:startBut/ 
setUp)]; 
…………………………………………………………….. 
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Outgoing Transitions State 

ID 
State Name 
*=default 

Substates Substate 
Events ID Event Action Next 

State
n2 Idle*   a2 jetOn  n3 
n3 Running n5, n6 jetPulse a3 jetOff  n2 
n5 Spraying*   a5 jetPulse  n6 
n6 Pulsing       

 

Figure 3.10 Part of the updated state table for statechart of Jet class 

 
Outgoing Transitions State 

ID 
State Name 
* = default 
+ = history 

Substates Substate 
Events ID Event Action Next 

State 
n2 PowerOff*   a2 powerBut  n3 
n3 PowerOn n4, n15 open, close, 

startBut, 
full, rinsed, 
washed, 
empty, 
finish 
intMode, 
quickMode, 
normMode 

a3 powerBut  n2 

n4 Active n6, n14      
n6 DoorClosed+ n8,n9,n10, 

n11,n12,n13 
startBut, 
full, rinsed, 
washed, 
empty, 
finish 

a5 open  n14 

n8 Stop*   a8 startBut setUp n9 
n9 Filling   a9 full  n10 
n10 Rinsing   a10 rinsed  n11 
n11 Washing   a11 washed  n12 
n12 Draining   a12 empty  n13 
n13 Drying   a13 finish  n8 
n14 DoorOpen   a14 close  n6 
n15 Mode n17,n18,n19 intMode, 

quickMode, 
normMode 

    

a15 intMode  n18 n17 Normal*   
a20 quickMode  n19 
a16 normMode  n17 n18 Intensive   
a17 quickMode  n19 
a18 intMode  n18 n19 Quick   
a19 normMode  n17 

 

Figure 3.11 Part of the updated state table for statechart of Dishwasher class 
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     The statechart module then processes the state table and removes the 

information of the pseudostates (Initial, History, Fork and Join etc.) from the state 

table and updates the table accordingly. Figure 3.10.shows the updated state table 

for the statechart diagram of the Jet class (Figure 3.4). Figure 3.11 shows the 

updated state table for the statechart diagram of the Dishwasher class (Figure 3.2). 

 

     The statechart module returns the transformed state table back to the class 

diagram module. The state table is stored in the ClassInfo table along with other 

information of the corresponding class. Figure 3.12 shows the part of the updated 

class table for the dishwasher system after the processing of the statechart module.  

 

 
Data members Class 

ID 
Class Name 

Visibility Name Type 
State Table 

public cycle int 
public rinseTime int 
public washTime int 
public dryTime int 
public heater Heater 
public jet Jet 

n1 Dishwasher 

public tank Tank 

Dishwasher state table 

n2 Heater    Heater state table 
n3 Jet    Jet state table 
n4 Tank    Tank state table 

 

Figure 3.12 Part of the updated class table for dishwasher system 

 

 

3.2.3 Code Generation Module 
 

    In the code generation module, the system takes information from the class and 

state tables and generates the Java code for the entire application model following 

our proposed code generation approach.  
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Application Class 
 

     In our approach, an application class is generated with a main() method that acts 

as an entry point to the whole system. For the dishwasher system, as shown in 

Figure 3.1, the main application class DishwasherAppl, is generated. The name of 

the class is derived from the project name specified in the input class diagram DSL 

file (Figure. 3.7). All the instances of classes of the class diagram are declared and 

initialized in the constructor of this class. The application object is created and 

initialized in the main() method. The initialization code is also defined here. Figure 

3.13 shows the generated Java code for the application class of the dishwasher 

system 

 

 

Figure 3.13  Generated code for the application class of dishwasher system 

 

Classes in the Class Diagram 
 

     All classes within the class diagram are transformed into Java code. For each 

class of the class diagram, a separate file with (.java) extension is generated. The 

class DishwasherAppl { 
 //***  Data Members  *** 
  public Tank   tank; 
  public Jet   jet; 
  public Heater   heater; 
  public Dishwasher   dishwasher; 
 //***  Constructor of the Application class  *** 
  public  DishwasherAppl() {  
 tank  = new Tank(); 
 jet  = new Jet(); 
 heater  = new Heater(); 
 dishwasher  = new Dishwasher(); 
  }  //end of the Constructor  
  public static void main(String args[]) { 
 //***  Creating the Application class instance  *** 
   DishwasherAppl  dishwasherAppl = new DishwasherAppl(); 
  } // End of Main Method 
} // End of DishwasherAppl class 
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generated code contains all the class definitions of name, attributes and methods. 

Relationships between classes are identified and transformed into code. To 

implement the associations between classes, reference attributes with public 

visibility are generated in the corresponding classes. If the association is 

bidirectional then reference attributes are generated in both classes and if the 

association is unidirectional then reference attribute is generated in the source class 

only.  

 

     If the class has an associated statechart, then the generated code for the class 

contains not only the structural code but it also contains the behavioral code for the 

class. Additional classes, implementing the state specific behavior, are generated in 

the same Java file that implements the context class. To implement a statechart 

diagram, the collaborator object approach, described in the chapter 2, is used, 

where each state becomes a class and each transition becomes an operation in that 

class. The transformation rules are summarized in Table 3. Figure 3.14 shows the 

code generated for the Dishwasher class of the dishwasher system. 

 

Table 3  UML to Java transformation for JCode 

 

UML Collaborator Object Approach 

State Class. All the behavior associated with a 
particular state is contained in one class 

Event Method in the corresponding state class 

Action Method in the context class 

Entry / Exit Actions Method in the corresponding state class  
Hierarchical and Concurrent 
substates Object composition and delegation 
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Figure 3.14 Part of the generated code for the Dishwasher class 

 

class Dishwasher {  
    //****  Attributes  ****** 
  public int cycles; 
  public int rinseTime; 
  public int washTime; 
  public int dryTime; 
    //**** Associations  ****** 
  public int washTime; 
  public int washTime; 
  public int washTime; 
    //****  Statechart  ****** 
  public DishwasherState   state;  // collaborator 
object 
//***  References for all the state objects  *** 
  public PowerOff   powerOffState; 
  public PowerOn    powerOnState; 
  public DoorOpen  doorOpenState; 
  public DoorClosed  doosClosedState 
……… 
  public  Dishwasher() {  // constructor 
//***  Creating state objects only once here  *** 
  jet = new Jet(); Heater = new Heater();   
  tank = new Tank(); 
  powerOffState = new PowerOff(this); 
  powerOnState = new PowerOn(this); 
  doorOpenState = new DoorOpen( this, 
powerOnState); ……… 
  state = powerOffState;// setting the default state 
  } 
//***  Change the current State  *** 
  public void setState(DishwasherState st) { 
  state = st; 
  state.entry();  // executing entry action new state 
  } 
//***  Delegating incoming events to Concrete 
State Subclasses   *** 
  public void powerBut() { state.powerBut();   } 
  public void open() {state.open();   } 
  public void intMode() {  state.intMode();  } 
………. 
    //****  Actions of statechart  ****** 
  public void setup() {   } 
} // End of Dishwasher class  
class DishWasherState { // Abstract state class 
  public Dishwasher  dishwasher;  //Reference of 
Context Object 
//***  Declaring Abstract Method  *** 
  public void entry() {}; 
  public void exit() {}; 
  public void powerBut() {}; 
  public void open() {}; 
  public void intMode() {}; ………….} 

    //****  composite state  ***** 
class Running extends DishwasherState {   
private AbsActiveState  activeState;  
private AbsModeState   modeState; 
  PowerOn (Dishwasher  dishwashers)  {   
    super(dishwashers); } 
  public void entry() { 
    activeState = dishwasher.doorClosedState; 
    activeState.entry(); 
    modeState = dishwasher.normalState; 
    modeState.entry(); 
   } 
//***  Substates Events  *** 
  public void close()  {//delegates to e object 
   activeState.close();   } 
//***  Outgoing Events  *** 
  public void powerBut() {   activeState.exit(); 
   modeState.exit();  exit();   
dishwasher.setState(dishwasher.powerOffState);}
………….} 
   //****Abstract composite state class  *****// 
class AbsActiveState {  
  public Dishwasher   m_context;  //Super Context
  public PowerOn s_context;  // Composite state
//***  Defining abstract methods for Active   
          concurrent Region *** // 
} 
class DoorOpen extends AbsActiveState{ 
  public void close() {  exit(); 
s_context.setActive(m_context.doorClosedState);
  } } 
class DoorClosed extends AbsActiveState{ 
  private AbsDoorClosedState substate; 
  private int hist; 
  public void startBut() {  subState.startBut();  } 
 } 
……………………….. 
   //****Abstract composite state class  *****// 
class AbsModeState {  
  public Dishwasher   m_context;  //Super Context
  public PowerOn s_context;  // Composite state
//***  Defining abstract methods for Mode   
          concurrent Region *** // 
} 
class Normal extends AbsModeState{ 
  public void intMode() {  exit(); 
  s_context.setMode(m_context.intensiveState); 
  } 
  public void quickMode() {  exit(); 
  s_context.setMode(m_context.quickState);  } } 
…………….. 
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Chapter 4 
 
 
 
 

Code Generating System: JCode 
 
 
 
     We have developed the JCode system, which automatically generates Java code 

from the specifications of the UML class and statechart diagrams of a system using 

our approach. JCode is the successor of OCode. JCode uses state machines of 

objects and structural specifications as given in the class diagram of the system and 

generates code for the entire application model. It generates the code for the 

objects as well as their behavior and action specifications. In this chapter, we 

describe the JCode system in detail. 

 

     We will use the example of an Air Conditioner application to describe the detail 

working of the JCode System. Figure 4.1 shows the static structure of the Air 

Conditioner system. The Air Conditioner system consists of six classes, namely 

AirCon, DisplayInterface, PowerButton, SpeedButton, ModeButton and 

TempButton. The DisplayInterface and AirCon class has a one-to-one association. 

The DisplayInterface class has one way aggregation relationships with 

PowerButton, ModeButton, SpeedButton and TempButton classes. Aggregation 

represents a whole/part relationship. The DisplayInterface represents the “whole” 

and PowerButton, ModeButton, SpeedButton and TempButton represent the “part”. 

The dynamic behavior of the AirCon class is specified in the statechart diagram as 

shown in Figure 4.2.  
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Figure 4.1 Class diagram for the air conditioner system 

 

 

 
 

Figure 4.2 Statechart of AirCon class  
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     The input to the JCode system is the model specifications in Design Schema 

List (DSL) language [29]. The output from the JCode system is the Java [30] code. 

JCode is developed in Java and is basically composed of six modules: Main 

module, CDAnalyzer, CDTransformer, SCAnalyzer, SCTransformer and 

CodeGenerator module. Figure 4.3 shows the overall structure of the JCode system.  

 

 

 
 

Figure 4.3 Structure of the JCode system 

 

 

4.1 Main Module 
 

     The Main module is the main controlling module. The main module takes the 

specifications of the class diagram in DSL format as input for the JCode system. It 

then calls CDAnalyzer and CDTransformer modules to process the class diagram 

DSL file. If a statechart is attached to a class then the CDTransformer module in 
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turn calls the SCAnalyzer and SCTransformer modules to process the statechart 

DSL file. Finally the main module calls the Code Generator module to generate the 

Java code for the entire application model. 

 

     A number of classes have been used to form the structure of a nested table and 

to represent the elements of the class and statechart diagrams. These classes 

include: ClassInfo, MemberData, MemberFunc, Relation, State, Transition, Event, 

Argument, Internal Event and Join. 

 

 

4.2 CDAnalyzer  
 

     The CDAnalyzer module reads the specifications of the class diagram, given in 

DSL format, and stores the information into two tables, namely ClassInfo (for 

classes) and Relation (for relationship between classes) thus transforming the class 

diagram information from DSL format to a table format. Figure 4.4 shows the class 

diagram specifications of the air conditioner system in DSL format. 

 

 
 

Figure 4.4  Class diagram specifications of air conditioner system in DSL format 

OOD (g1)[nodes{n1,n2,n3,n4,n5,n6},arcs{a1,a2,a3,a4,a5}, oodAttr(name:AirConditioner)]; 
 
OODN(n1)[loc(50:50),size(40:60),oodnAttr(name:DisplayInterface)]; 
OODN(n2)[loc(150:250),size(40:50),oodnAttr(name:AirCon, interface: AirCon.dsl)]; 
OODN(n3)[loc(250:350),size(40:50),oodnAttr(name:PowerButton)]; 
OODN(n4)[loc(350:150),size(40:50),oodnAttr(name:ModeButton)]; 
………………… 
OODA(a1)[from(n1,side:TOP,off:25),to(n2,side:BOTTOM,off:35), oodaAttr(arcType:assoc, 
forwardMult:1,reverseMult:1)]; 
OODA(a2)[from(n3,side:RIGHT,off:30),to(n1,side:LEFT,off:40), oodaAttr(arcType:aggr, 
forwardMult:1, reverseMult:0)]; 
OODA(a3)[from(n4,side:RIGHT,off:25),to(n1,side:LEFT,off:35), oodaAttr(arcType:aggr, 
forwardMult:1, reverseMult:0)]; 
OODA(a4)[from(n5,side:LEFT,off:25),to(n1,side:RIGHT,off:35), oodaAttr(arcType:aggr, 
forwardMult:1,  reverseMult:0)]; 
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     The CDAnalyzer module has a number of methods. The most important 

methods are readCDFile, analyzerCD and analyzeCDLine. Following is the 

brief description of the functionality of these methods. 

 

The readCDFile Method 
 

     The readCDFile method reads the DSL file character by character, throws all 

the white spaces and creates a long string that contains all the DSL statements of 

the class diagram. It stores the long string in a variable, dataCDFile, of type String. 

It passes this long string to the analyzerCD method for processing the class 

diagram.  

 

The analyzerCD Method 
 

     This method takes the class diagram DSL file as a long string and splits the long 

string into several small strings, each representing a DSL statement. A DSL 

statement always ends on a semicolon, so the DSL file string is split on semicolons. 

Each string, which represents a DSL statement, becomes an element of an array. 

The analyzerCD method then starts a loop which calls the analyzeCDLine 

method (explained below) for each element of this string array and passes the 

string as argument. 

 

The analyzeCDLine Method 
 

     This is a long method which takes a string, representing a DSL statement, as 

arguments and analyzes it. It collects the information contained in the DSL 

statement and, based on this information instantiates objects of ClassInfo and 

Relation classes and stores the information into these two tables. Nodes in DSL 

represent the classes. All the information about the classes is stored in the 
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ClassInfo table. Arcs in DSL represent the relationships among classes. All the 

information about the relationships is stored in the Relation table. For example 

after reading the following DSL statement 

 

OODN(n2)[loc(150:250),size(40:50),oodnAttr(name:AirCon, interface: AirCon.dsl)] 
 

a ClassInfo object having the values of its id attribute as “n2” will be searched. If 

the object does not exist, it will be created. The name attribute will be initialized 

with the value “AirCon” and the statechartFileName attribute will be initialized 

with the value “AirCon.dsl”. Figure 4.5 shows the part of the ClassInfo table of the 

air conditioner system. 

 
Data members Class 

ID 
Class Name 

Visibility Name Type 
Statechart 
DSL Filename 

n1 DisplayInterface     
n2 AirCon    AirCon.dsl 
n3 PowerButton     
n4 ModeButton     
n5 SpeedButton     
n6 TempButton     

 

Figure 4.5 Part of the ClassInfo table for air conditioner system 

 

 

4.3 CDTransformer  
 

     After the CDAnalyzer module does its job, the information contained in the 

DSL file is converted into an intermediate form in which the class diagram 

elements are represented as object instances. This information, however, is 

unorganized and needs to be transformed. DSL, being graphical oriented, treats 

relations as arcs so we need to process the Relation table and update the ClassInfo 

table to properly record the information for code generation.  
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The processRelation Method 
 

     This method processes the Relation table and updates the ClassInfo table for 

relationship between classes. If the relationship is of type inheritance then the child 

class attribute inherit is set to true and the name of the parent class is also set in the 

parent attribute of the child class. If the relationship is of type aggregation or 

association then the multiplicity on both ends is checked and relationship attributes 

are added in the respective classes.  

 

    The CDTransformer module then process the ClassInfo table and extracts the 

statechart DSL filenames and passes this information to the SCAnalyzer module 

for processing the statechart DSL file. Figure 4.6 shows the statechart DSL 

filenames for the air conditioner system passed to the SCAnalyzer module.  

 
Class ID Class Name Statechart DSL Filename 

n1 DisplayInterface  
n2 AirCon AirCon.dsl 
n3 PowerButton  
n4 ModeButton  
n5 SpeedButton  
n6 TempButton  

 

Figure 4.6 Statechart DSL filenames for classes of air conditioner system 

 

 

4.4 SCAnalyzer  
 

     The SCAnalyzer module receives the statechart DSL filenames from the 

CDTransformer module and it then reads the specifications of the statechart 

diagram, given in DSL format and stores the information into two tables namely 

State and Transition thus transforming the information from DSL format to a table 
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format. Figure 4.7 shows the statechart specifications of AirCon class in DSL 

format. 

 

 

 
 

Figure 4.7 Statechart specifications of AirCon class in DSL format 

 

The SCAnalyzer module has a number of methods. The most important methods 

are readSCFile, analyzerSC and analyzeSCLine. Following is the brief 

description of the functionality of these methods. 

 

The readSCFile Method 
 

     This readSCFile method reads the statechart DSL file character by character, 

throws all the white spaces and creates a long string that contains all the DSL 

statements. It stores the long string in a variable, dataSCFile, of type String. It 

passes this long string to the analyzerSC method for processing the statechart 

diagram.  

 

 

 

OSTD (AirCon)[nodes{n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12},arcs{a1,a2,a3,a4,a5,a6, a7, 
        a8, a9,a10,a11}]; 
OSTDN(n1)[loc(25:20),size(20:20),ostdnAttr(name:START)]; 
OSTDN(n2)[loc(10:140),size(75:125),ostdnAttr(name:Stop)]; 
OSTDN(n3)[loc(125:160),size(10:100),ostdnAttr(name:FORK)]; 
OSTDN(n4)[loc(160:10),size(260:400),ostdnAttr(name:Operating,entry/setOn,exit/setOff, 
                             event(name:tempPlusBut)/tempUp,concurrent{n5,n9})]; 
OSTDN(n5)[loc(160:20),size(260:180),ostdnAttr(name:Mode,substates{n6,n7,n8})]; 
OSTDN(n6)[loc(190:150),size(30:25),ostdnAttr(name:HISTORY)]; 
…………………………………………….. 
OSTDA(a1)[from(n1,side:BOTTOM,off:5),to(n2,side:TOP,off:40)]; 
OSTDA(a2)[from(n2,side:RIGHT,off:35),to(n3,side:LEFT,off:140),ostdaAttr(name:powerBut)
]; 
……………………………………………… 
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The analyzerSC Method 
 

     This method takes the DSL file of the statechart as a long string from the 

readSCFile method and splits the long string into several small strings each 

representing a DSL statement. A DSL statement always ends on a semicolon, so 

the DSL file string is split on semicolons. Each string, which represents a DSL 

statement, becomes an element of an array. The analyzerSC method then starts a 

loop which calls the analyzeSCLine method (explained below) for each string 

and passes the string as argument. 

 

The analyzeSCLine Method 
 

     This is a long method which takes a string, representing a DSL statement, as 

argument and analyzes it. It collects the information contained in the DSL 

statement and, based on this information instantiates objects of State and 

Transition classes and stores the information into these two tables for the class 

with which the statechart is attached. Nodes in DSL of the statechart diagram 

represent the states. All the information about the states is stored in the State table. 

Arcs in DSL of the statechart diagram represent the transitions of the statecharts. 

All the information about the transitions is stored in the Transition table. For 

example after reading the following DSL statement 

 

OSTDN(n4)[loc(160:10),size(260:400),ostdnAttr(name:Operating,entry/setOn,exit/
setOff,event(name:tempPlusBut)/tempUp,concurrent{n5,n9})] 
 

 

a State object having the values of its id attribute as “n4” will be searched. If the 

object does not exist, it will be created. The name attribute will be initialized with 

the value “Operating” and the type of state is set to concurrent. The substate 

attribute which is an array of pointers to other State objects and represents the 
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substates of the current state will contain pointers to the State objects having ids 

“n5” and “n9”. Similarly the information about the transitions, which includes 

name of the triggering event, event action, source state and target state, is stored in 

the Transition table. Figure 4.8 shows the part of the State table for the statechart 

diagram of the AirCon class. 

 

 
Outgoing Transitions State 

ID 
State Name 
 

Substates Internal 
Event ID Event Action Next 

State
n1 START   a1   n2 
n2 Stop   a2 powerBut  n3 

a3   n6 n3 FORK   
a4   n10 

n4 Operating n5, n9 tempPlusBut 
/ tempUp() 

a5 powerBut  n2 

n5 Mode n6, n7, n8      
n7 HISTORY   a6   n7 
n7 Cooler   a7 modeBut setHeater n8 
n8 Heater   a8 modeBut setCooler n7 
n9 Speed n10, n11, n12      
n10 HISTORY   a9   n11 
n11 Low   a10 speedBut setHigh n12 
n12 High   a11 speedBut setLow n11 

 

Figure 4.8 Part of the state table for statechart of AirCon Class 

 

 

4.5 SCTransformer  
 

     After the SCAnalyzer module does its job, the information contained in the 

DSL file is converted into an intermediate form in which the state diagram 

elements are represented as object instances. This information, however, is 

unorganized and needs to be transformed. For example, in a statechart diagram, the 

pseudostates (e.g. Start state, history, fork, join etc.) are shown with their special 

symbols. DSL, being graphical oriented, treats them as a node like any other node 
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but in effect they are not the real states of an object so we need to eliminate them 

and update the table with the semantics of these pseudostates. Also, for code 

generation, we need to know not only the events that are supposed to occur on a 

state itself but also the events that may occur on its substates. The purpose of the 

SCTransformer module is to refine the information given by the SCAnalyzer 

module in a way so that code can be easily generated from it. The arrangeSC and 

findEventsActions are the important methods. Following is the brief description 

of these methods. 

 

 

The arrangeSC Method 
 

     This method processes the State table and removes the pseudostates from the 

table and it also updates the Transition table for the transitions going out or coming 

in to these pseudostates so that their semantics are fully implemented and code can 

be easily generated. This method then processes the Transition table and stores the 

information of each transition in the source state in the State table as outgoing 

transition. Finally this method sorts the State table such that the super state comes 

before all of its substates.  

 

 

The findEventsActions Method 
 

     This method finds out for each super state object the events that occur on the 

substates of that state. It uses the pointers in the susbstates array and then follows 

the transitions and internal events of each of the substates to fetch the events and 

actions. Figure 4.9 shows the part of the updated State table for the AirCon class 

after transformation. 
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Outgoing Transitions State 
ID 

State Name 
*=default 
+=history 

Substates Substate 
Events ID Event Action Next 

State
n2 Stop*   a2 powerBut  n4 
n4 Operating n5, n9 modeBut,  

speedBut 
a5 powerBut  n2 

n5 Mode+ n7, n8 modeBut     
n7 Cooler*   a7 modeBut setHeater n8 
n8 Heater   a8 modeBut setCooler n7 
n9 Speed+ n11, n12 speedBut     
n11 Low*   a10 speedBut setHigh n12 
n12 High   a11 speedBut setLow n11 

 

Figure 4.9 Part of the updated state table for statechart of AirCon class. 

 

     The SCTransformer module then passes the transformed State table back to the 

CDTransformer module. The State table is stored in the ClassInfo table along with 

other information of the corresponding class. Figure 4.10 shows the part of the 

ClassInfo table for the air conditioner system after the processing of the 

SCTransformer module. 

 
Data members Class 

ID 
Class Name 

Visibility Name Type 
State Table 

public airCon AirCon 
public powerButton PowerButton 
public modeButton ModeButton 
public speedButton SpeedButton 

n1 
 

DisplayInterface 
 

public tempButton TempButton 

 

n2 AirCon public displayInterface DisplayInterface AirCon state 
table 

n3 PowerButton     
n4 ModeButton     
n5 SpeedButton     
n6 TempButton     

 

Figure 4.10 Part of the updated ClassInfo table for air conditioner system 
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4.6 Code Generator 
 

     This module uses the transformed ClassInfo and State tables given to it by the 

CDTransformer module and generates the Java code for the entire application. It 

first creates a new directory with the same name as the application name and then 

it generates separate Java files for each of the classes of the class diagram. If there 

is an associated statechart then the code for the statechart is also generated in the 

same Java file. The generated code for each of the Java file is first written to a 

string buffer and in the end the buffer is written to disk. 

 

    The Code Generator module first executes the generateApplication method 

which generates code for the main application class. Figure 4.11 shows the 

generated code for the application class of the air conditioner system.  

 

 

Figure 4.11  Generated code for the application class of air conditioner system 

 

 
class AirConditioner { 
 //***  Data Members  *** 
  public TempButton   tempButton; 
  public SpeedButton   speedButton; 
  public ModeButton   modeButton; 
  public PowerButton   powerButton; 
  public AirCon   airCon; 
  public DisplayInterface   displayInterface; 
 //***  Constructor of the Application class  *** 
  public  AirConditioner() {  
 tempButton  = new TempButton(); 
 speedButton  = new SpeedButton(); 
 modeButton  = new ModeButton(); 
 powerButton  = new PowerButton(); 
 airCon  = new AirCon(); 
 displayInterface  = new DisplayInterface(); 
  }  //end of the Constructor  
  public static void main(String args[]) { 
 //***  Creating the Application class instance  *** 
   AirConditioner  airConditioner = new AirConditioner(); 
  } // End of Main Method 



 56

     A loop is then started which calls the generateClassInfo method for each class 

object present in the ClassInfo table and passes the class as the input parameter. 

 

The generateClassInfo Method 
 

     The generateClassInfo method first checks if a statechart is attached to the 

class. If there is no statechart attached then it generates all the structural code of 

the class in a separate java file as described in chapter 3. Figure 4.12 shows the 

code for the DisplayInterface class of the air conditioner system (Figure 4.1).  

 

 

Figure 4.12  Generated code for the DisplayInterface class 

 

 

     If the class has an associated statechart (e.g. AirCon class Figure 4.2), then it 

calls the generateContext method to generate the code for the context class. The 

code for the context class contains the combined code for the structural 

specifications as well as for the behavioral specifications.  

 

 
class DisplayInterface { 
 //***  Data Members  *** 
  public  PowerButton  powerButton; 
  public  AirCon  airCon; 
  public  TempButton  tempButton; 
  public  SpeedButton  speedButton; 
  public  ModeButton  modeButton; 
 //***  Constructor   *** 
  public  DisplayInterface()  { 
 powerButton  = new PowerButton(); 
 airCon  = new AirCon(); 
 tempButton  = new TempButton(); 
 speedButton  = new SpeedButton(); 
 modeButton  = new ModeButton(); 
  } 
} // End of class DisplayInterface 
} // End of AirConditioner class 
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The generateContext Method 
 

    The generateContext method generates the Java code for the class attributes, 

associations, methods and it also includes code for attached statechart according to 

the collaborator object approach as described in chapter 2. First of all code for all 

the attributes and associations of the context class are generated. Then collaborator 

object state and all the state objects are defined. The constructor is then generated. 

All the state objects are created once in the constructor. The collaborator object 

state is also initialized to the default state in the constructor. All the events of the 

statechart become methods in the context class. The body of these methods 

contains only a statement which delegates the event to the collaborator object. All 

the actions of the statechart become methods in the context class. The body code of 

the actions methods has to be entered by the user. Finally the code for the member 

functions of the context class is generated.  

 

     An abstract state class is generated in the same Java file. The name of the 

context attribute is derived from the context class name and “State” is added to it. 

The abstract state class contains an attribute for the context object and also 

contains empty declarations for the entry/exit actions and all the events of the 

statechart diagram.  

 

    After this the generateContext method processes the State table of that class in 

a loop and calls the following methods according to the type of the state.  

 

The generateState Method 
 

     The generateState method generates the code for the top level states having 

no super state. A class is generated for each state. The name of the class is derived 

from the name of the state. The state class is derived from the abstract state class. 



 58

If the state has entry/exit actions, methods having the name entry and exit 

respectively, are defined in the state class. Bodies of these methods contain a 

method-call to the corresponding entry/exit actions. The code for internal events 

and outgoing transitions (if any) is also generated. An event on any substate 

becomes a method in the corresponding substate class. Body code for the method 

is also completely generated. If the event is an internal event, the body code 

contains a method-call, which executes the associated action. If the event has a 

transition, the body code also contains:   (i) call to the exit operation of the current 

state, (ii) method-call for setting the next state, which in turn calls the entry actions 

of the new state. 

 

The generateHierarchical Method 
 

     The generateHierarchical method generates the code for the hierarchical 

composite state class in the same Java file as the context class. The hierarchical 

composite state class contains a single collaborator object subState. The entry 

method is also defined which sets the default active substate. Also, an exit method 

is defined which contains a call to the exit actions of the active substate It also 

contains the code for storing the active substate in the history state attribute. For 

each event on the substates, a method is defined that delegates the event processing 

to the substate and calls the method(s) for that event defined in the class(es) for the 

substate(s). It also contains methods for setting the next substate and calling the 

entry action of the next substate. 

 

The generateConcurrent Method 
 

     The generateConcurrent method generates the code for the concurrent 

composite state class in the same Java file as context class. The concurrent 

composite state, class contains as many collaborator objects as there are concurrent 
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regions in the composite state. The composite state class is responsible for 

implementing the fork. Also, an exit method is defined which contains a call to the 

exit actions of the active substates in each of the concurrent regions. It also 

contains the code for storing the active substate in the history state attribute. For 

each event on the substates, a method is defined that delegates the event processing 

to the substate and calls the method(s) for that event defined in the class(es) for the 

substate(s). It also contains methods for setting the next substate and calling the 

entry action of the next substate. 

 

The generateRegion Method 
 

     The generateConcurrent method generates code for the concurrent region. 

The concurrent region becomes a composite abstract class and serves as an 

interface for its own subclasses. This class is not derived from any other class. In 

addition to the entry and exit operations, it contains empty declarations for 

operations corresponding to its substates. It also contains two objects, namely 

m_context and s_context. m_context provides access to the context class for 

executing the actions associated with events and entry/exit operations and 

s_context provides access to the composite state class to change the next substate. 

 

The generateSubState Method 
 

     The generateSubState method generates the code for the substate. A class is 

generated for each substate. The name of the class is derived from the name of the 

substate. The state class is derived from the composite abstract state class. If the 

state has entry/exit actions, methods having the name entry and exit respectively, 

are defined in the state class. Bodies of these methods contain a method-call to the 

corresponding entry/exit actions. The code for internal events and outgoing 

transitions (if any) is also generated. 
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class AirCon { // context class 
  DisplayInterface  displayInterface; // date member 
  public AirConState  state;  // collaborator object 
  public Stop stopState; 
  public Operating operatingState; 
  public Cooler  coolerState; 
  public Heater  heaterState; 
  public Low   lowState; 
  public High  highState; 
AirCon() {  //constructor 
  stopState = new Stop(this); 
  operatingState = new Operating(this); 
  coolerState = new Cooler(this,operatingState); 
  heaterState = new Heater(this,operatingState); 
  lowState = new Low(this,operatingState); 
  highState = new High(this,operatingState); 
  state = stopState // setting default state          } 
public void setState(AirConState st) { 
   state = st; 
  state.entry();  } 
public powerBut() { state.powerBut(); } 
public modeBut() {state.modeBut(); } 
…………………. 
public void setOff() {……} 
public void setCooler() {……} 
………} 
 
public AirConState { // abstract state class 
  public AirCon airCon;  // context reference  
  public void entry() {}; 
  public void exit() {}; 
  public void powerBut() {}; 
  public void tempPlusBut() {}; 
…………..} 

class Operating extends AirConState{ // composite 
  private AbsModeState  modeState; 
  private AbsModeState  modeHistory; 
  private AbsSpeedState  speedState; 
  private AbsSpeedState  speedHistory; 
  int hist = 0; 
public void entry() { 
  if (hist > 0) {// last active substate 
   modeState = modeHistory; 
   speedState = speedHistory; } 
else {  // for first time entry 
  modeState = airCon.coolerState; 
  speedState = airCon.lowState; } 
modeState.entry(); speedState.entry(); 
airCon.setOn(); } 
public void exit() {airCon.setOff; 
 modeHistory = modeState;  
speedHistory = speedState;    } 
public void modeBut() { modeState.modeBut(); } 
public void speedBut() { speedState.speedBut(); 
public void powerBut() {modeState.exit(); 
 speedState.exit(); exit(); 
airCon.setState(ac.stopState); } 
public void setMode(AbsModeState subMode) { 
   modeState = subMode;   modeState.entry();  }...} 
class AbsModeState { // abstract composite state 
  public AirCon m_context; 
  public Operating s_context; 
/* Empty declarations for entry(), exit() and all 
events methods of subclasses of AbsModeState*/  
} 
class Cooler extends AbsModeState{//substate class
 void modeBut() { m_context.setCooler(); exit(); 
  s_context.setMode(m_context.heaterState); }  } 

 

Figure 4.13 shows part of the code generated by JCode for the AirCon class of the 

air conditioner system. 

 

 

 

Figure 4.13 Part of the generated code for the AirCon class  
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Chapter 5 
 
 
 
 

Implementing Other Features of 
 
Statechart Diagram 
 
 
 
     The statechart diagram, when attached to a class, shows all the behavioral 

aspects of the objects in that class. Concurrent substates not only represent the 

inherent parallelism in some of the objects but also enable compact descriptions of 

the complex state diagrams [20, 21]. This chapter discusses the other features of 

statechart diagram such as fork, join and history state and how our proposed 

approach implement these features in our code generating system JCode.  

 

 

5.1 Fork and Join 
 

     Fork and join pseudostates synchronize transitions entering or leaving 

orthogonal regions of the concurrent composite state. A fork is a transition with 

one source state and two or more target states. If the source state is active and the 

trigger event occurs, the transition action is executed and all the target states 

become active. A join is a transition with two or more source states and one target 
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state. If all the source states are active and the trigger event occurs, the transition 

action is executed and the target state becomes active. 

 

     We use an example to simplify the explanation of our approach for 

implementing fork and join. Consider the statechart attached with a Test class, as 

shown in Figure 5.1. The statechart shows the behavior of the Test object. 

 

 
 

Figure 5.1 Statechart for Test class containing Fork and Join 

 

 

     The Test object has three top-level states namely A, B and G. The G state is a 

composite state containing two concurrent substates Region1 and Region2. 

Whenever the G state becomes active, both of its concurrent substates become 

active at the same time. Each of the concurrent regions contains sequential 

substates, i.e. Region1 has substates C and D and Region2 has substates E and F. 

Only one of the sequential substates becomes active in each of the concurrent 

regions. The state A is the default state. A transition from a solid circle to a state 

shows that that the state is the default one. On transition t1, the control forks into 

as many concurrent flows as there are concurrent substates. On transition t4, the 

control joins back into one.  
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5.1.1     Implementing Fork and Join 
 

     In [26] the implementation of fork is distributed among the source state and the 

context object and the source state is responsible for activating the target states of 

the composite state. The fork state is the part of the composite state. In [28] and the 

present study, we modified our implementation approach and encapsulated the 

implementation of the fork in the composite state. The composite state is 

responsible for activating its concurrent substates in each of the concurrent regions. 

Fork is implemented in the entry() method of the composite state. In the entry() 

method, the composite state sets the active substates in each of the concurrent 

regions and also calls their entry() methods. 

 

     To implement join, we have to make sure that all the source states are active 

before the transition fires. We have implemented join in the entry() methods of the 

source states. If all the other source states are active then the join transition is fired 

by calling the corresponding event method of the super context class, which will 

delegate it to the current active state. 

 

     Figure 5.2 shows the part of the generated code for the Test class. Fork is 

implemented in the entry() method of the B state class. Join is implemented in the 

entry() methods of the substate classes D and F. 
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Figure 5.2 Part of the generated code for the Test Class 

 

 

5.2 History State 
 

     A statechart describes the dynamic aspects of an object whose current behavior 

depends on its past. A statechart in effect specifies the legal ordering of states an 

object goes through its lifetime. History state allows a composite state that contains 

sequential substates to remember the last substate that was active in it prior to the 

transition from the composite state. 

 

class G extends TestState { //composite state 
  private AbsRegion1State  region1State; 
  private AbsRegion2State  region2State; 
  G (Test tests) {  // constructor 
     super(tests);    } 
public void entry() { // implementing fork 
  region1State = test.cState; 
  region1State.entry(); 
  region2State = test.eState; 
  region2State.entry();} 
public void t4() {  // outgoing transition 
  region1State.exit(); region2State.exit(); 
  exit(); test.setState(bState); } 
public void t2() { region1State.t2(); } 
public void t3() { region2State.t3(); } 
public void setRegion1(AbsRegion1State 
subRegion1) {region1State  = subRegion1;   
region1State.entry();  } 
public AbsRegion2State getregion2State() { 
    return   region2State;   } 
………….} 
class AbsRegion1State // abstract composite state 
  public Test   m_context; 
  public G       s_context; 
/* Empty declarations for entry(), exit() and all 
events methods of subclasses of 
AbsRegion1State*/ } 
class D extends AbsRegion1State { 
 public void entry() { // implementing join 
if (s_context.getregion2State().equals 
(m_context.fState)) 
     m_context.t4(); }  } 
…………. }    

class Test { // context class 
  public TestState  state;  // collaborator object  
  public  A   aState; 
  public  B   bState; 
  public  G   gState; 
  public  C   cState; 
  public  D   dState; 
  public  E   eState; 
  public  F   fState 
Test() {  //constructor 
  aState = new A(this); 
  bState = new B(this); 
  gState = new G(this); 
  cState = new C(this,gState); 
  dState = new D(this,gState); 
  eState = new E(this,gState); 
  fState = new F(this,gState); 
  state = aState // setting default state          } 
public void setState(TestState st) { 
  state = st; 
  state.entry();  } 
public void t1() {  state.t1(); } 
….………} 
public TestState { // abstract state class 
  public Test test;  // context reference 
  public void entry() {}; 
  public void exit() {}; 
  public void t1() {}; 
  public void t4()  {}; 
………….. } 
Class A extends TestState { // state class 
  public void t1() {   exit(); 
     test.setState(test.gState); } }  
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     We use an example to simplify the explanation of our approach for 

implementing the history state. Consider the statechart attached with a CPlayer 

class, as shown in Figure 5.3. The statechart shows the behavior of the CPlayer 

object. 

 

 
 

Figure 5.3 Statechart for CPlayer class containing history state 

 

     The CPlayer object has two top level states namely PowerOff and PowerOn. 

These states are activated alternatively whenever a powerBut event occurs. Initially 

the CPlayer is in the default state PowerOff, where it accepts the powerBut event. 

The CPlayer object reacts on such an event by switching from the PowerOff state 

to PowerOn state. A state can have entry and exit actions, which are executed 

when a state is activated or deactivated. When the PowerOn state is activated the 

setOn action is executed, while setOff action is executed when the PowerOn state 

is deactivated. A state can also have internal transitions. An internal transition has 

an event trigger that causes an execution of an action without causing a change in 

state. While in PowerOn state, if the volPlusBut event occurs then only the volUp 

action will be executed and the CPlayer will remain in the PowerOn state.  

 

     The PowerOn state is a hierarchical composite state containing two sequential 

substates Stop and Play. One of these substates becomes active at the same time 
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whenever the PowerOn state gets activated. Stop state is the default state. While in 

PowerOn state, on playBut event, the CPlayer switches to the next sequential 

substate Play. Similarly, on stopBut event, the CPlayer switches back to the 

sequential substate Stop. On powerBut event, the CPlayer switches to the 

PowerOff state. Sending a powerBut event will reactivate the CPlayer. When the 

CPlayer is reactivated, it switches into the history state of the PowerOn state and 

recalls the last active substate.  

 

 

5.2.1 Implementing History State 
 

     In [27] the implementation of the history state is distributed among the 

composite state and the context object. The history state is part of the composite 

state. In [28] and the present study, we modified our implementation approach and 

encapsulated the implementation of the history in the composite state. 

 

      If a composite state contains a history state, then a reference object, with 

private visibility for maintaining history, is defined in the composite state class. 

The name of the history reference is derived from the name of the composite state 

class and “History” is added to it. The type of the history reference is the abstract 

composite state class. Another variable hist, of type int, is also defined for 

checking whether the history is being set for the first time or the subsequent time. 

The variable hist is initialized to zero (0) in the constructor of the composite state 

class. In the entry() method of the composite state the current value of hist 

reference is checked. If hist is zero (0) it means that the composite state is activated 

for the first time and the substate reference is initialized to the default substate of 

the composite state and hist variable is set to one (1). If hist is greater than one then 

the substate reference is assigned the history reference object. The history 

reference is adjusted to the last active substate in the exit() method of the 
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composite state class. Figure 5.4 shows the part of the generated code for the 

CPlayer class. 

 

 
 

Figure 5.4 Part of the generated code for the CPlayer Class 

 

 

class CPlayer {  // context class 
  public CPlayerState  state;  // collaborator object
  public  PowerOff   powerOffState; 
  public  PowerOn   powerOnState; 
  public  Stop   stopState; 
  public  Play   playState; 
Test() {  //constructor 
  powerOffState = new PowerOff(this); 
  powerOnState = new PowerOn(this); 
  stopState = new Stop(this,powerOnState); 
  playState = new Play(this,powerOnState); 
  state = powerOffState // setting default state 
   } 
public void setState(TestState st) { 
  state = st; 
  state.entry();  } 
public void powerBut() {  state.powerBut(); } 
public void volPlusBut() {  state.volPlusBut(); } 
// All actions become methods 
public void setOn() {………} 
………} 
public CPlayerState { // Abstract state class 
  public CPlayer  cPlayer;  // context reference 
  public void entry() {}; 
  public void exit() {}; 
  public void powerBut() {}; 
  public void playBut() {}; 
………….. } 
Class PowerOff extends CPlayerState {//state 
class 
  public void powerBut() {   exit(); 
     cPlayer.setState(cPlayer.powerOnState);  
  } 
…….. } 

class PowerOn extends CPlayerState{//composite
  private AbsPowerOnState  subState; 
  private AbsPowerOnState  powerOnHistory; 
..private int hist; 
PowerOn (CPlayer cPlayers) {  // constructor 
   Super(cPlayers); hist = 0;  } 
public void entry() { 
  if (hist >0 ) { // implementing history 
      subState = powerOnHistory; } 
  else { 
      subState = cPlayer.stopState; hist = 1; } 
   subState.entry(); 
    cPlayer.setOn();  // action  } 
public void exit()  {  cPlayer.setOff(); // action 
    cPlayer.powerOnHistory = subState; 
public void powerBut() {  // outgoing transition 
  subState.exit();  exit();  
  cPlayer.setState(powerOffState); } 
public void volPlusBut() { // Internal Transition 
  cPlayer.volUp(); } 
public void stopBut() { subState.stopBut(); } 
public void setSub(AbsPowerOnState sub) { 
   subState  = sub;   subState.entry();  } 
.…….} 
class AbsPowerOnState{//abstract composite  
  public CPlayer    m_context; 
  public PowerOn  s_context; 
/* Empty declarations for entry(), exit() and all 
events methods for substates */ 
………. } 
class Stop extends AbsPowerOnState { 
 public void playBut() { m_context.startPlay(); 
   exit(); s_context.setSub( m_context.stopState; }
….} 
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Chapter 6 
 
 
 
 

Comparison With Rhapsody and  
 
OCode 
 
 
 
     Rhapsody [19, 20, 21], which is a successor of STATEMATE [22], is a CASE 

tool that allows creating UML models for an application and then generates C, 

C++ or Java code for the application. Rhapsody generates code from UML class 

and statechart diagrams. It follows an approach similar to switch statement 

approach, described in chapter 2, to implement UML statechart diagram. Rhapsody 

uses Object eXecution Framework (OXF) [19] for code generation.  

 

     OCode [24, 25] is another tool for code generation from Object Modeling 

Technique (OMT) [6, 31, 32, 33] dynamic models. OCode uses an approach 

similar to helper object approach to generate code for OMT state transition 

diagram. OMT state transition diagram is the predecessor of UML statechart 

diagram. UML statechart diagram contains many features which are not present in 

OMT state transition diagram, e.g. history states, fork and join, time events etc. 

JCode is the successor of OCode. 

 

     We will now compare the code generated by JCode with that of Rhapsody and 

OCode. We generated code for six different applications. To compare the 
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efficiency of the code generated by Rhapsody, OCode and JCode, we performed an 

experiment in which the same sequence of 4000 requests was sent. Out of these 

4000 events, some caused transitions while the remaining events did not cause any 

transition and were ignored. For each event, the time taken to process the event 

was calculated. We made all the actions methods empty and concentrated on 

measuring the time taken while executing transitions, i.e. changing states. To have 

more accurate results, we repeated the experiment 20 times and calculated the 

average values. The experiment was performed on a Sun SPARC workstation. 

 

 

6.1 Watch Application  
 

     Figure 6.1 shows the static structure of the Watch application. The Watch 

application consists of five classes namely Watch, DisplayArea, SetButton, 

UpButton and ModeButton. The dynamic behavior of the Watch class is specified 

in the statechart as shown in Figure 6.2. Table 4 shows the compactness of the 

code generated by Rhapsody and JCode. Table 5 shows the comparison of 

efficiency of the code generated by Rhapsody, OCode and JCode for watch 

application. 

 

 
 

Figure 6.1 Class diagram for the watch application 
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Figure 6.2 Statechart of Watch class containing hierarchical states. 

 

 

Table 4     Compactness of generated code for watch application 

 

 Rhapsody Without OXF JCode 

Source code: Number of lines 868 274 

Source code: Number of bytes 28130 6360 

Number of classes 10 18 
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Table 5     Efficiency of generated code for watch application 

 

 
Rhapsody

(x) 
(millisecs)

OCode (y) 
(millisecs)

JCode (z) 
(millisecs)

Improvement 
over Rhapsody 

(x – z)/x*100 

Improvement
over OCode
(y – z)/y*100

Total time for events 
without 
transitions(a) 

8.25 3.90 3.05  

Average Time per 
event without 
transition (a / 1400)  

0.00589 0.00279 0.00218 63.00% 21.80%

Total time for events 
having transitions(b) 25.10 18.50 10.50  

Average Time per 
event having 
transition (b / 2600)  

0.00965 0.00712 0.00404 58.20% 43.20%

Total time for all 
events (c= a + b) 33.35 22.40 13.55  

Average Time per 
event  (c / 4000)  0.00834 0.00560 0.00339 59.40% 39.50%

 

 

6.2 Microwave System 
 

     Figure 6.3 shows the static structure of the Microwave system. The Microwave 

system consists of six classes, namely Oven, DisplayPanel, StopButton, 

StartButton, PowerButton and ModeButton. The dynamic behavior of the Oven 

class is specified in the statechart as shown in Figure 6.4. Table 6 shows the 

compactness of the code generated by Rhapsody and JCode and Table 7 shows the 

comparison of efficiency of the code generated by Rhapsody, OCode and JCode 

for the microwave system. 
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Figure 6.3 Class diagram for the microwave system 

 

 
 

Figure 6.4 Statechart of Oven class containing concurrent states. 
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Table 6     Compactness of generated code for microwave system 

 

 Rhapsody Without OXF JCode 

Source code: Number of lines 1236 347 

Source code: Number of bytes 40050 7890 

Number of classes 14 22 
 

 

Table 7     Efficiency of generated code for microwave system 

 

 
Rhapsody

(x) 
(millisecs)

OCode (y) 
(millisecs)

JCode (z) 
(millisecs)

Improvement 
over Rhapsody 

(x – z)/x*100 

Improvement
over OCode
(y – z)/y*100

Total time for events 
without 
transitions(a) 

5.80 3.75 2.95  

Average Time per 
event without 
transition (a / 1330)  

0.00436 0.00282 0.00222 49.10% 21.30%

Total time for events 
having transitions(b) 26.05 28.30 10.35  

Average Time per 
event having 
transition (b / 2670)  

0.00976 0.01060 0.00388 60.30% 63.40%

Total time for all 
events (c= a + b) 31.85 32.05 13.30  

Average Time per 
event  (c / 4000)  0.00796 0.00801 0.00333 58.20% 58.50%

 

 

6.3 Dishwasher System 
 

     We have generated the code for the Dishwasher system of Figure 3.1 and 

compared the code generated by Rhapsody and JCode. Table 8 shows the 

compactness of code generated by Rhapsody and JCode. Table 9 shows the 

comparison of efficiency of the code generated by Rhapsody, OCode and JCode. 
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Table 8     Compactness of generated code for dishwasher system 

 

 Rhapsody Without OXF JCode 

Source code: Number of lines 2175 613 

Source code: Number of bytes 67900 13400 

Number of classes 30 36 
 

Table 9     Efficiency of generated code for dishwasher system 

 

 
Rhapsody

(x) 
(millisecs)

OCode (y) 
(millisecs)

JCode (z) 
(millisecs)

Improvement 
over Rhapsody 

(x – z)/x*100 

Improvement
over OCode
(y – z)/y*100

Total time for events 
without 
transitions(a) 

7.65 3.55 2.85  

Average Time per 
event without 
transition (a / 1290)  

0.00593 0.00275 0.00221 62.80% 19.70%

Total time for events 
having transitions(b) 29.60 30.55 10.70  

Average Time per 
event having 
transition (b / 2710)  

0.01092 0.01127 0.00395 63.80% 65.00%

Total time for all 
events (c= a + b) 37.25 34.10 13.55  

Average Time per 
event  (c / 4000)  0.00931 0.00853 0.00339 63.60% 60.30%

 

 

6.4  Air Conditioner System 
 

     We have generated the code for the Air Conditioner system of Figure 4.1 and 

have compared the code generated by Rhapsody, OCode and JCode. Table 10 

shows the compactness of the code generated by Rhapsody and JCode. Table 11 

shows the comparison of efficiency of the code generated by Rhapsody, OCode 

and JCode.  
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Table 10     Compactness of generated code for air conditioner system 

 

 Rhapsody Without OXF JCode 

Source code: Number of lines 920 241 

Source code: Number of bytes 29565 5445 

Number of classes 12 16 
 

Table 11     Efficiency of generated code for air conditioner system 

 

 
Rhapsody

(x) 
(millisecs)

OCode (y) 
(millisecs)

JCode (z) 
(millisecs)

Improvement 
over Rhapsody 

(x – z)/x*100 

Improvement
over OCode
(y – z)/y*100

Total time for events 
without 
transitions(a) 

8.80 4.30 3.65  

Average Time per 
event without 
transition (a / 1750)  

0.00501 0.00246 0.00208 58.50% 15.10%

Total time for events 
having transitions(b) 28.30 19.35  8.20  

Average Time per 
event having 
transition (b / 2250)  

0.01257 0.00860 0.00364 71.00% 57.60%

Total time for all 
events (c= a + b) 37.10 23.65 11.85  

Average Time per 
event  (c / 4000)  0.00928 0.00591 0.00296 68.00% 49.90%

 

 

6.5 Cassette Player System 
 

          We have generated the code for the Cassette Player system, described in 

chapter 5, and compared the code generated by Rhapsody and JCode. Table 12 

shows the compactness of code generated by Rhapsody and JCode. Table 13 

shows the comparison of efficiency of the code generated by Rhapsody, OCode 

and JCode. 
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Table 12     Compactness of generated code for cassette player system 

 

 Rhapsody Without OXF JCode 

Source code: Number of lines 550 178 

Source code: Number of bytes 13960 4031 

Number of classes 6 12 
 

Table 13     Efficiency of generated code for cassette player system 

 

 
Rhapsody

(x) 
(millisecs)

OCode (y) 
(millisecs)

JCode (z) 
(millisecs)

Improvement 
over Rhapsody 

(x – z)/x*100 

Improvement
over OCode
(y – z)/y*100

Total time for events 
without 
transitions(a) 

11.05 5.05 3.80  

Average Time per 
event without 
transition (a / 1919)  

0.00576 0.00263 0.00198 65.60% 24.80%

Total time for events 
having transitions(b) 20.85 12.90 7.95  

Average Time per 
event having 
transition (b / 2081)  

0.00999 0.00620 0.00382 61.80% 38.40%

Total time for all 
events (c= a + b) 31.90 17.95 11.75  

Average Time per 
event  (c / 4000)  0.00798 0.00448 0.00294 63.20% 34.50%

 

 

6.6 Test Device Application 
 

     We have generated the code for the Test Device application described in 

chapter 5, and compared the code generated by Rhapsody and JCode. Table 14 

shows the compactness of code generated by Rhapsody and JCode. Table 15 

shows the comparison of efficiency of the code generated by Rhapsody, OCode 

and JCode. 
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Table 14     Compactness of generated code for test device application 

 

 Rhapsody Without OXF JCode 

Source code: Number of lines 727 215 

Source code: Number of bytes 18575 4834 

Number of classes 11 16 
 

 

Table 15     Efficiency of generated code for test device application 

 

 
Rhapsody

(x) 
(millisecs)

OCode (y) 
(millisecs)

JCode (z) 
(millisecs)

Improvement 
over Rhapsody 

(x – z)/x*100 

Improvement
over OCode
(y – z)/y*100

Total time for events 
without 
transitions(a) 

5.05 4.40 3.95  

Average Time per 
event without 
transition (a / 1778)  

0.00284 0.00248 0.00222 21.80% 10.20%

Total time for events 
having transitions(b) 23.10 22.05  9.10  

Average Time per 
event having 
transition (b / 2222)  

0.01039 0.00992 0.00409 60.60% 58.70%

Total time for all 
events (c= a + b) 28.15 26.40 13.05  

Average Time per 
event  (c / 4000)  0.00704 0.00660 0.00326 53.60% 50.60%
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6.7 Comparison Results 
 

    Findings of the comparisons are as follows: 

 

6.7.1 Compact Code 
 

     Code generated by JCode is more compact. In all of the six applications, the 

source code generated by Rhapsody is more than three times longer than the code 

generated by JCode. Our approach may look like introducing many classes, 

because the behavior for different states is distributed across several state 

subclasses. However this distribution eliminates large conditional statements. 

Large conditional statements are undesirable because they tend to make the code 

less understandable and are difficult to modify and extend. In addition, as the 

context class and events become subclasses of the OXF framework, the number of 

classes is larger than that of JCode.  

 

     OCode generates code for the class with which statechart is attached and it does 

not generate code for other classes of the application model. To have a fair 

comparison we compared the code generated by OCode with JCode for the 

statecharts of AirCon class (Figure 4.2), Text class (Figure 5.1) and CPlayer class 

(Figure 5.3). Table 16 shows the compactness of code generated by OCode and 

JCode. 
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Table 16     Compactness of code generated by OCode and JCode 

 

  OCode JCode 

 Source code: Number of lines 150 136

CPlayer Class Source code: Number of bytes 3964 3182

 Number of classes 6 7

 Source code: Number of lines 208 178

Test Class Source code: Number of bytes 5065 4021

 Number of classes 11 11

 Source code: Number of lines 231 192

AirCon Class Source code: Number of bytes 5614 4268

 Number of classes 10 10
 

     The results show that the code generated by JCode is about 10% more compact 

than OCode. OCode generates almost the same number of classes.  

 

     Rhapsody uses data values to represent states. Events are represented as classes 

and are derived from the framework class RiJEvent. All the behavior of the context 

class is put into one class. The code generator automatically derives model classes 

from the framework classes based on the application classes. That is why 

Rhapsody has a smaller number of classes than JCode. The transition searching is 

performed by switch statement. Each event handler method contains the switch 

statement and checks each state of the statechart to get the current active state. 

Each state has its own event processing method. The entry/exit actions are 

implemented as methods and for every state three different versions of entry 

actions and two different versions of exit actions are generated. Even if the entry or 

exit actions are not defined for a state, the empty method bodies are generated. As 

events are represented as classes, a separate class containing the event definition is 
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generated for each event of the statechart. That is why the code generated by 

Rhapsody is more than three times longer than the code generated by JCode. 

 

     OCode as well as JCode distribute the behavior among context and state classes. 

The state classes contain implementation methods only for their specific events and 

entry/exit actions. If there are no specific entry/exit actions or no outgoing 

transitions for a state then the state classes execute the inherited methods from the 

abstract state class. In OCode the state hierarchy is represented by inheritance and 

concurrency by composite object, while JCode implements state hierarchy and 

concurrency by object composition and delegation. That is why the number of 

classes is almost the same in OCode and JCode. OCode uses temporary objects so 

on each transition a new state object is created. JCode uses more persistent and 

permanent objects and state objects are created once in the constructor of context 

class. In OCode the setting of next state is the responsibility of the current state, so 

the event method of the state object contains the code for setting the new state and 

also calling the entry method of the new state. In JCode, the setting of next state is 

the responsibility of the context class and a method setState() is defined in the 

context class for this purpose. The current state after executing its exit action calls 

the setState() method. The setState() method sets the new state and also executes 

the entry action of the new state. That is why the code generated by JCode is about 

10% more compact than OCode and more than three times more compact than 

Rhapsody. 

 

 

6.7.2 Efficient Code 
 

     The results of the experiment show that in all of the six applications, the code 

generated by JCode is about 60% more efficient than Rhapsody and about 50% 

more efficient than OCode.  
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     In Rhapsody, events are represented as objects. The client object calls the gen() 

method of the context object, which creates the event object and then consumes the 

event. Various framework classes are involved in the invocation of the event 

processing mechanism. The transition searching is performed using a switch 

statement. If there is a transition on the event then the corresponding event 

handling method is called, otherwise it returns a false value and the event is 

ignored. On transition, apart from setting the new state, various methods are 

executed to perform the two exit actions and three entry action methods defined for 

the corresponding state. When summed up, all this takes a considerable amount of 

time to process an event.  

 

   OCode uses temporary state objects and on every transition a new state object is 

created which implements the behavior specific to the new state. The state 

reference is updated with the new target state object. The state object is defined as 

a class variable rather than the instance variable. Similarly, all the action methods 

of the context class are also defined as class methods. On the occurrence of an 

event, the context class delegates it to the helper object. There is no conditional 

structure in the code and the transition searching is performed using polymorphism. 

If there is no transition, then only the empty event method is executed by the state 

object, which it inherits from the abstract state class and nothing more happens. 

 

     JCode has used more persistent and permanent state objects and all the state 

objects are created only once in the constructor of the context class. The 

collaborator object is defined as an instance variable. All the action methods are 

defined as instance methods. On the occurrence of an event, the context class 

delegates it to the collaborator object. On transition, the event method defined in 

the concrete state class is executed. The exit action of the current state is called, 

followed by calling the setState() method of the context to set the collaborator 

object with the reference of the new state and no new object is created. The 

composite state class handles the event targeted to the composite state or its 
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substates. If the target is a substate, then the composite state will delegate it to its 

collaborator object for processing. The implementation of history and fork is 

encapsulated in the composite state class. This minimizes the method calls. That is 

why the time taken to process an event in JCode is markedly short. 

 

    We have carried out another experiment to measure the effect on efficiency of 

the JCode generated code by changing different design choices. We performed the 

experiment for the watch application as shown in Figure 6.2. We have used the 

same sequence of 4000 events for all the different versions and measured the time 

taken to process the events. To have more accurate results we repeated the 

experiments 20 times and calculated the average values. JCode uses permanent 

state objects and actions as instance methods, while substates are implemented by 

using the concept of object composition and delegation. We have used other design 

choices such as states as temporary objects, actions as class methods and 

implementation of substates with inheritance. Only one design choice is changed at 

a time and the effects on the efficiency are measured for different combinations of 

these design choices. Table 17 summarizes the effects on efficiency of the 

generated code with different design choices. 

 

Table 17     Efficiency of generated code with different design choices 

 

JCode (Watch Application) Time 
(millisecs)

Object composition + Permanent objects + Instance methods 
(Implemented in JCode) 13.55

Inheritance + Permanent objects + Instance methods 13.50

Object composition + Permanent objects + Class methods 13.40

Object composition + Temporary objects + Instance methods 32.40
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     The results show that other design choices such as inheritance and class 

methods do not have a significant effect on the efficiency of the generated code. 

The use of temporary objects has a profound effect on the efficiency and the 

performance is degraded significantly. We can conclude that the use of persistent 

and permanent objects is the major reason for the JCode generated code to be more 

efficient than the code generated by other systems. 

 

     We have put all the behavior associated with a particular state into one class. 

Because all the state-specific code is contained in a single state class, new states 

and events can be added easily by defining new subclasses and operations. 

Representing different states as separate objects makes the transitions more explicit 

and the code more understandable. JCode also generates appropriate comments 

within the code to make the generated code more readable and understandable. 
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Chapter 7 
 
 
 
 

Related Work 
 
 
 
     The most related works are that of Rhapsody [19, 20, 21] and OCode [24, 25]. 

Rhapsody generates C, C++ and Java code from UML class and statechart 

diagrams. OCode generates Java code from OMT dynamic models. As described 

earlier, our code is more compact, efficient and readable than that of Rhapsody. 

Our code is more efficient than OCode. 

 

 

7.1 Implementing Class Diagram 
 

     In addition to Rhapsody, there are other commercially available CASE tools 

that support graphical editors to draw various UML diagrams and generate some of 

the implementation code from some of these diagrams.  ArgoUML [11], Poseidon 

[12], Metamill [13], objectiF [14], MagicDraw [15] and Objecteering [16] allow to 

create UML models and generate limited skeleton code from UML class diagrams. 

Code generation from only the class diagram generates a limited skeleton code and 

is not executable. These tools generate only the header files from the class 

diagrams. 
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7.2 Implementing Statechart with Switch Statement 
     In this section we will discuss the approaches for implementing statecharts 

which are based on switch statement approach [34] discussed in section 2.1 of 

chapter 2. 

 

     Metz et al [35] proposed an approach to implement statechart diagrams based 

on switch statement [34]. States are represented as constant attributes, events and 

actions as methods. All the behavior is put into one class. State transition is 

performed using a switch statement. State hierarchy is implemented using flat 

states and separate methods are defined to handle the transitions for substates and 

history state. Concurrent states are not implemented.  

 

 

7.3 Implementing Statechart with Design Patterns 
 

     Our approach for implementing statecharts has some similarity with State 

design pattern [36] but State pattern does not provide any means for implementing 

the dynamic parts of the statechart. The State pattern provides a structural 

mechanism and the implementation strategy of individual states, state hierarchy 

and concurrency is left open. Several other design patterns have been proposed to 

implement statechart diagram. These patterns focus on some particular features of 

the statechart but none of them have been used in any code generating system. 

Since a design pattern specifies a general solution for recurring design problems, it 

is not expected to describe the details of the implementation. It provides guidelines 

for the implementation but the actual implementation decisions have to be made by 

the developer. 

 

Douglass [34] proposed the State Table Pattern to implement the statechart 

diagrams. States and transitions are modeled as classes. The context class contains 
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a State Table instance that provides references to concrete state and transition 

objects. The state table encapsulates the transition table of size num_states  x 

num_transitions. The context object sends an external event, encapsulated as a 

constant, to the transition class that returns the resulting state. Next, the context 

delegates the processing to the event to that state object. The transition table is a 

sparse array and has a high initialization overhead as a large table is needed to be 

initialized. 

 

Yacoub and Ammar [37] proposed a pattern language of statecharts based on the 

concepts of statecharts developed by Harel [4]. Basic Statechart pattern is an 

extension to state design pattern [36] to implement guards and entry/exit actions. 

Hierarchical Statechart and Orthogonal Statechart are extensions to Basic 

Statechart pattern for implementing hierarchical and concurrent substates. History 

State pattern is an extension of Hierarchical State pattern for implementing history 

state.  

 

Tomura et al. [38, 39] proposed the Statechart design pattern for finite state 

machines. The context class has exactly one StateMachine object. The 

StateMachine is a class for describing a statechart. The object of this class consists 

of two set of states and transitions. The object corresponds to either of a statechart 

diagram itself, sequential substate or a concurrent substate. Entry/exit actions, 

guards and actions on transitions are all implemented as interfaces. Entry/exit 

actions are implemented as methods in the state object and guards and actions are 

implemented as methods in the corresponding transition object. The transition is 

also represented as an object. On the occurrence of an event, each StateMachine 

object automatically updates its current state by referring to its Transition objects 

corresponding to the event. Transition searching is performed by a conditional 

statement. There is no support for history state and join. 
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     Samek [40, 41] proposed two design patterns, Hierarchical State Machine 

(HSM) and the Quantum Hierarchical state machine (QHsm), to implement state 

hierarchy and transition dynamics. In HSM, states are represented as instances of 

the State class, but unlike the state pattern [36], the State class in not intended for 

subclassing but rather for inclusion as is. The important attributes of State class are 

the event handler (to describe behavior specific to state) and a pointer to superstate 

(to define nesting of the state). All states are potentially composite as there is no 

distinction between composite states and the leaf states. Messages are represented 

as instances of Msg class or its subclasses. All messages carry event type as 

attribute. Events are handled by event handlers which are member function of 

HSM class. Transition searching is performed using a switch statement inside the 

event handler function. Entry/exit actions and default transitions are also 

implemented inside the event handler function. The state machine engine generates 

and dispatches these events to appropriate handlers upon state transition. 

 

     The QHsm is an improved version of HSM. The QHsm class provides 

implementation for the event handler function and the function that implements the 

state transitions. ConcreteQHsm classes are derived from QHsm class and they 

have to implement functions for handling the events in specific states (one function 

for each composite and simple state). The dispatcher function inherited from 

QHsm is responsible for delegating events from the deepest state in the hierarchy 

until it is handled or the top state is reached. Although this pattern provides support 

for reflecting the state hierarchy and flexible implementation of transitions, the 

action associated to the transition cannot be directly represented. The action has to 

be performed before or after entry/exit action. Concurrency and history state are 

not supported by both HSM and QHsm. 

 

     Pinter and Majzik [42] proposed an extension to QHsm called Extended 

Quantum Hierarchical state machine (EQHsm). They proposed support for actions 

on transition, concurrency and history state. A pointer to action is passed as a 
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parameter in the transition function. History state is represented as a pointer in the 

event method. Concurrency is implemented by multiple communicating state 

machines with wrapper states and special events. 

 

     Gurp and Bosch [43] presented a design pattern called Finite State Machines 

(FSM) framework, which models all the statechart elements as classes. States, 

events, actions and transitions are represented as objects. The FSMContext class 

holds a reference to the current state and all state-specific data (in a repository). 

State is represented by a single class and contains a set of transitions. The 

transition object has a reference to the target state and an action object. The 

FSMContext responds to events and passes the events on to the current state. The 

state object maintains a list of transition-event pairs. When an event is received the 

corresponding transition is located and then executed. The transition object 

executes the associated action and then sets the target state as the current state in 

FSMContext. The structure of the FSMContext object is complex and contains a 

large repository of objects. FSM framework generates code only for the finite state 

machines and does not implement the hierarchical and concurrent substates. The 

context repository does not provide any interface to update the state-specific data 

so action classes can make uncontrolled changes to the data.  

 

     Köhler et al. [44] presented a tool FUJABA [45] for code generation from UML 

class and statecharts. Their approach adapts the idea of array based state table [34] 

but uses an object-oriented implementation of the state table. FUJABA uses 

objects to represent the states and attributes to hold the entry/exit and action 

methods. The state objects are linked via transition objects. Each transition object 

has an array of target states. The transition objects have their firing event name. 

Additional links and attributes represent the nesting of complex states, history 

states etc. Events are implemented as methods. The event methods create an event 

object encapsulating the event name and possible parameter values.  A library 

function is used to interpret the table of the state and to react on events. This 
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function is also responsible for issuing appropriate action methods and switching 

to the resulting states. The hierarchical and concurrent states are handled by 

flattening the statechart. The table look up is less efficient than a virtual function 

call. The transition logic is less explicit and it is difficult to add actions to 

accompany the state transitions. 

 

Ran [46] proposed models for object-oriented design of state (MOODS). MOODS 

are a family of design patterns that may be used to simplify the design and 

implementation of objects with state-dependent behavior. An alternative technique 

of selecting the optimal design among different state machine patterns, using 

design decision trees (DDT) is proposed. Design decisions are fine-grained 

elements of design. States can be represented as classes and events as methods. 

The focus is primarily on generic problems such as complex object behavior, event 

cause state changes, which are prerequisites to state design pattern [36].  

 

 

7.4 Other Approaches to Implement Statechart 
 

    In this section we will discuss approaches to implement statecharts which are 

neither discussed in chapter 2 nor sections 7.2 and 7.3. These are different from the 

ones we have discussed so far.  

 

Mellor and Balcer [47] proposed the executable UML (xUML) methodology 

which uses a specialized subset of UML notation for software development. The 

xUML uses UML class diagram, statechart diagram and action language. An 

application-independent software architecture is suggested which defines a set of 

design decisions expressed as a set of rules to apply to an application to produce 

the implementation of a system [48]. The architecture has a structure similar to 

UML metamodel. A StateChart class is defined which holds a representation of 
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statechart. One StateChart object is instantiated for each class that has a statechart. 

An abstract base class ActiveInstance is created which captures the data and 

behavior common to each object instance of context class. The StateChart class 

captures the specification of state behavior while the ActiveInstance captures the 

current state of each object instance. These architectural design decisions and the 

applications (as stored in metamodel) are combined using a translation template 

written in a special-purpose language. The model compilers use these templates to 

generate the implementation code.  

 

     Shlaer and Mellor [49] proposed an implementation of statecharts which is 

based on a linked list of transitions. They use a subset of Harel’s statecharts [4]. 

UML statechart diagram has extended the Harel’s statechart to make it object-

oriented [1]. States are represented as data values and events as operations in the 

context class with which statechart is attached. Transitions are represented as 

objects. The Context class maintains an instance of a State Machine. The State 

Machine object maintains a linked list of transition objects. Each transition object 

knows an event ID, a source state and a target state. A transition object exists for 

each combination of events and states, even for those events that are to be ignored. 

On the occurrence of event, the context object traverses its list of transitions. The 

transition object either returns the next state or informs context to ignore the event. 

Actions are not provided for transitions. There is no support for hierarchy, 

concurrency and entry/exit actions.  

 

     Wasowski [50, 51] presented a hierarchical code generator called SCOPE [52]. 

SCOPE compiles a sublanguage of statecharts supported by visualSTATE [53] and 

produces C language code. The visualSTATE statecharts are a subset of Harel’s 

statecharts [4] incorporating most of the original statechart language including 

concurrent states, history, internal transitions and other elements. These statecharts 

are similar to UML statecharts. SCOPE uses flattening in which hierarchical 

statecharts are converted into parallel Mealy machines and then code is generated. 
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SCOPE’s hierarchy tree is represented in integer arrays. State addresses (array 

indexes) are used as state identifiers. Transitions are stored in a simple hash table, 

with events being hash keys. Each event has a linear list of transitions assigned.  
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Chapter 8 
 
 
 
 

Conclusion 
 
 
 

     An object-oriented approach has been proposed to convert the UML class and 

statechart diagram into implementation code. Our approach generates compact and 

efficient executable code for the entire application model. The generated code 

contains the structural as well as behavioral code for all the classes of the 

application model. 

 

     The statechart diagram, which is difficult to implement, can now easily be 

implemented by using the collaborator object approach. In our approach, states in 

the statechart diagram are represented as classes and transitions as operations 

eliminating the need of using large conditional statements. All the behavior related 

with a particular state is put into one object and this localizes the state-specific 

behavior. Because all state-specific code lives in a state subclass, new states and 

transitions can be added easily by defining new subclasses. Our approach 

distributes behavior for different states across several state classes. This increases 

the number of classes, but such distribution is actually good as introducing 

separate objects for different states makes the transitions more explicit. This makes 

the components of the statechart diagram explicit and the resulting code easier to 

understand and maintain. Our approach implements the statechart semantics as 
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faithfully as possible and ensures that the resultant code is still consistent with the 

UML model.  

 

     The proposed approach has been implemented in our system, JCode, which 

automatically converts the UML class and statechart diagrams specifications into 

Java code. The comparison with Rhapsody shows that the code generated by JCode 

system is about 60% more efficient and about three times more compact than that 

of Rhapsody. Our Code is also about 10% more compact and about 50% more 

efficient than that of OCode. 

 

     Our approach is an object-oriented approach and in the present study we have 

used Java as the target language. However our approach is general so it can be 

used to generate the low level code in other object-oriented languages. The code 

generation engine has to be tailored to the target language as some of the features 

are implemented differently in different object-oriented programming languages. 
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