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Abstract 
A system is introduced which automatically generates 

implementation code from the object and dynamic models 
of an application.  We found that the behavior of active 
objects can well be represented by activity diagrams rather 
than state diagrams.  The paper first explains our approach 
to convert state diagrams as well as activity diagrams into 
implementation code.  The paper then describes our system, 
dCode, which automatically generates executable Java code 
from the object diagram, state diagrams and activity 
diagrams of an application. The paper also presents the 
results of the experiment in which the code generated by 
dCode was compared to that of Rhapsody. 
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1 Introduction 

Object Oriented (OO) software is a collection of 
interacting objects. Classes of objects have structural 
properties as well as behavior. There are many OO 
methodologies [1,2,3,4] that help find the structural 
properties and behavior of a system by creating its different 
models.  Object Modeling Technique (OMT)[5], which is a 
popular OO methodology, represents the static aspects of a 
system by object model and its dynamic behavior by 
dynamic model. 

 
OMT and other OO methodologies describe in sufficient 

detail the steps to be followed during the analysis and design 
phases but fail to show how the analysis and design models 
of a system shall be converted into implementation code. 
For a large fraction of programmers, it is quite difficult to 
write code from the analysis and design models. This is 
especially true in the case of the dynamic model. It would be 
ideal to have CASE tools that can generate or help to 
generate implementation code from the analysis and design 
models. 

 
Most of the present CASE tools [6,7,8,9] generate only 

declarative code like header files from the object model.  
Generating header files from the object model is 
straightforward because of its static nature.  The dynamic 
model is considered difficult to implement due to its 
dynamic nature.  A few CASE tools [10,11,12,13,14] can 

generate code from state transition diagrams. However, most 
of them do not support state hierarchy and concurrency 
within state diagrams except Rhapsody [14] which is a tool 
that generates C++ code from the object and dynamic 
models. 

 
We have been working on automatic code generation 

from the dynamic model, which is represented by a set of 
state transition diagrams. In this context, we already 
developed a system [15] that automatically converts the 
dynamic model represented by a simple state diagram into 
executable Java code [16].  Later, the system was expanded 
to support concurrent states in the state diagram, thus 
allowing intra-object concurrency [17]. Both of our previous 
systems can generate code from the dynamic model that is 
represented by a single state diagram.  However, a real 
system needs several state diagrams to represent its behavior. 
In the present study, a system is introduced to automatically 
generate implementation code from the object and dynamic 
models having multiple state diagrams.  We realized that 
activity diagrams could well represent the behavior of active 
objects, which keep their own control. The paper first 
explains our approach to convert state diagrams as well as 
activity diagrams into code.  While converting the dynamic 
model into code, we also refer to the object model to 
generate the initialization code properly. The paper then 
describes our system, dCode, which automatically generates 
executable Java code from the object diagram, state 
transition diagrams and activity diagrams of an application. 
We also compare the code generated by dCode to that of 
Rhapsody. 
 
2 The Elevator Example 
We illustrate our approach using an application that 
simulates a system controlling three elevators and six floors. 
The problem is a simplified version of the lift problem 
presented at the Forth International Workshop on Software 
Specification and Design [18]. The system has the following 
constraints. 
 
1. Each elevator has a set of buttons, one for each floor.  

These illuminate when pressed and cause the elevator to 
visit the corresponding floor.  The illumination is 
cancelled when the elevator visits the corresponding 
floor. 
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Figure 2: State diagram for Floor class 
 

After the initialization of the system, control mostly 
resides in the Graphical User Interface (GUI) component of 
the system. Controller receives messages from the GUI 
when a user interacts with the system. In response to these 
messages (events), Controller possibly changes the state of 
the system and sends messages to other objects in the 
system.  Typically, there is only one controller in a system, 
so there is only one object instance of this class. 

 
The Controller class in the elevator example is a 

uni-state class and does not need a state diagram.  It 
initializes the system by creating permanent objects (6 
instances of Floor and 3 instances of Elevator).  After 
initialization, control of the system resides in the click-able 
buttons that represent the up and down buttons at each floor.  
While the system is running, the Controller always 
behaves in the same way whenever it receives incoming 
messages from the Floor objects. So we do not need to do 
anything special about implementing the dynamic behavior 
of the Controller. 
 
5 State Diagrams 

Objects provide a number of services, which are 
accessed or get executed by sending a message to them.  
Objects often have different states and the availability of 
services provided by the objects depends upon the state they 
are currently in.  Such objects can be named as multi-state 
objects.  A state diagram usually represents the behavior of 
a multi-state object.  Unlike the Controller class, the 
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Figure 3: Class structure of the Floor class and its companion classes 
 
object. Objects that communicate with the Floor object do 
not need to know about state classes (subclasses of 
FloorState). They just send requests to the Floor, which 
become events for it. The Floor object delegates all the 
requests (events) to its state object. If there is a transition on 
the event, the corresponding operation in one of the state 
classes will get executed and the state of the Floor will 
change.  
 

As there are many Floor objects, the methods of the 
subclasses of the FloorState class, which correspond to 
state transitions, should know which instance of the Floor 
class is going to change state while the methods are 
executed. Due to this reason, the Floor object passes itself to 
the state object as a parameter, whenever it delegates outside 
requests (events) to the state object.  Part of the 
implementation code for the Floor class and its 
corresponding state classes is shown below. 
 

class Floor {
//default state
FloorState state = new NoWait();

//delegates all events to state
//and passes itself as parameter
upButton(){

state.upButton(this);
}
upArrived(Elevator e){

state.upArrived(this, e);
}
.....

//actions in the state diagram

//become methods here
callUpElevator(){.....}
addToUpList(){.....}
.....

}
class FloorState {

//contains empty declarations for
//all methods in the subclasses

}
class NoWait extends FloorState {

//each transition becomes a method
upButton(Floor f){

// call action
f.callUpElevator();
//change state
f.state = new UpWait();

}
downButton(Floor f){

f.callDownElevator();
f.state = new DownWait();

}
}
class UpWait extends FloorState {

upButton(Floor f) {
f.addToUpList();

}
downButton(Floor f){

f.callDownElevator();
f.state = new BothWait();

}
upArrived(Floor f, Elevator e){

f.upGetOn(e);
f.state = new NoWait();

}
}
.....
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5.2 Optimizing the Code 
As can be seen in the code above, when an event occurs, 

a method in the abstract class (FloorState) is called 
which is a fast operation. When there is a transition, 
however, a method in one of the subclasses of the 
FloorState class for that operation is executed.  The 
method dynamically creates a new instance representing the 
new state. The dynamic creation of objects makes the code a 
bit less efficient. 

 
Optimization of the code can be achieved by creating an 

instance of each of the subclasses of the FloorState 
class beforehand and then assigning one of these instances 
to the state object while a transition is executed. As the 
subclasses of FloorState only contain operations and do 
not have any data, their instances can be shared among 
different Floor objects. Therefore, we make these 
instances as class members (static) in the Floor class. 
Also, since these instances are only meant to be assigned to 
the state object and should not be changed, we declare them 
as constants (final). Following is part of the optimized 
code for the Floor class and its associated state classes. 

 
class Floor {

// creat state objects only once
final static FloorNoWait NO_WAIT

= new FloorNoWait();
final static FloorUpWait UP_WAIT

= new FloorUpWait();
final static FloorDownWait DOWN_WAIT

= new FloorDownWait();
final static FloorBothWait BOTH_WAIT

= new FloorBothWait();

//default state
FloorState state = NO_WAIT;
.....

}
class FloorNoWait extends FloorState {

upButton(Floor f){
f.callUpElevator();
f.state = UP_WAIT;

}
downButton(Floor f){

f.callDownElevator();
f.state = DOWN_WAIT;

}
}

 
5.3 Concurrency within State Diagrams 

State diagrams can have concurrent states (AND-states).  
AND-states become active simultaneously whenever their 
superstate becomes active.  As already described, in our 
approach an active state is represented by an object instance.  
For concurrent states, we need a mechanism that guarantees 
the creation of as many objects as the number of the 
concurrent substates whenever their superstate becomes 
active.  That is why, we represent the superstate of 
AND-substates as a composite class that owns objects of 
other classes. 

The composite class has references to the classes 

corresponding to the AND-substates. When the superstate of 
AND-substates becomes active, the corresponding 
composite class gets instantiated. The composite object then 
instantiates all the classes for which it has references. The 
instantiation of the composite class thus guarantees the 
instantiation of the classes that correspond to the 
AND-substates.  This behaves like activating many states 
simultaneously.  Similarly, when the composite object is 
deleted, all the objects it owns are also deleted. This behaves 
like leaving all the AND-substates at once when their 
superstate becomes inactive. 
 
6 Activity Diagrams 

State diagrams work well for representing the behavior 
of passive objects, which do not usually keep control.  
They get control only when some other object sends a 
message to them causing the execution of one of their 
methods.  After having completed the execution, control is 
transferred back to the object that had sent the message. 

 
In real systems we sometimes encounter active objects, 

which keep their own control.  They mostly perform their 
operations in a continuous loop. During the execution of the 
methods, they can send messages to execute methods in 
other objects and cause a temporary transfer of control to 
those objects.  Control is transferred back to the active 
objects as soon as the execution of the methods in other 
objects is finished.  For example, Elevator is an active class 
and does not wait for incoming messages from other objects. 
Instead, it executes a continuous loop and in each iteration, 
it checks whether there is any outstanding request that 
should be serviced. 

 
We observed that state diagrams could not represent 

well the behavior of active objects, because the transitions in 
state diagrams are mostly triggered on the occurrence of 
some external events.  We represent the behavior of active 
objects by an activity diagram. An activity diagram is like a 
state diagram except that the transitions are not triggered by 
external events [24].  Each node in the activity diagram 
shows an activity or possibly a condition, whereas in the 
state diagram it shows a state. As soon as the activity is 
performed, the transition is triggered and a new activity 
starts execution. In an activity diagram, the object itself 
determines when to execute a transition. It does not have to 
wait for other objects to send it messages, which become 
events to trigger the transitions. Figure 4 shows the activity 
diagram for the Elevator. 

 
In the proposed approach, an active class is 

implemented as a Java thread.  Therefore, each Elevator 
object has its own control. The continuous loop, which can 
be seen in the activity diagram, is placed inside the run() 
method.  Each activity becomes a method in the class.  If 
a node represents a condition, e.g., MoveNeeded?, it also 
becomes a method but returns a boolean value.  In the 
loop, each method is called in the sequence in which it 



appears in the activity diagram.  The method that 
represents a condition is called from inside an if-statement. 
Sub-activities, e.g., NotifyArrival and OpenDoor 
inside the Stop activity, become separate methods as well, 
and they are called from the method that corresponds to the 
super-activity (in this case the Stop activity). Following is 
the implementation code generated from the activity 
diagram of the Elevator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Activity diagram for Elevator class 
 

class Elevator implements Runnable {
.....
public void run() {

for (;;) {
if (stopNeeded()) stop();
if (moveNeeded()){

findDirection();
moveNext();

}
sleepASecond();

}
}
void stop() {

notifyArrival();
openDoor();
getOff();
getOn();
closeDoor();

}
.....

}
7 Classes having both State and Activity Diagrams 

Classes of objects may have more than one aspect, 
which should be implemented separately.  An active object, 
whose behavior is represented by an activity diagram, can 
also be a multi-state object and, therefore, need a state 
diagram showing its multi-state behavior. The Elevator 
class in the example is an active but uni-state class. (Here 
we are using the term multi-state in its strict meaning that 
suggests state-transitions triggered by external events, which 
are asynchronous, rather than internal signals, which merely 
show the completion of some actions.) Whenever the 
Controller object sends a message to the Elevator object 
asking its convenience, the Elevator object returns its 
convenience as an integer value. Similarly, each time the 
Controller object assigns an elevator to some floor, the 
Elevator object records the request as an outstanding request. 
This uni-state behavior of the Elevator class is not shown 
in the activity diagram (Figure 4).  If the Elevator had also 
been a multi-state class, we would have had to draw a state 
diagram in addition to the activity diagram, and to 
implement it in a way similar to the Floor class.  

 
Suppose the elevator system has a Halt and a Restart 

buttons for each elevator, which are used by a maintenance 
operator to do his maintenance job. The elevator now has 
two states: Normal (default) and Halted. In the Normal state 
the elevator acts just like before. However, when the Halt 
button is pressed, the halt action is executed which makes 
the elevator stop at the current floor and suspends the thread.  
In the Halted state, the elevator returns INCONVENIENT 
whenever its convenience is asked by the Controller. The 
Controller will not be able to assign a request to an Elevator 
in the Halted state.  When the Restart button is pressed, the 
elevator goes back to the Normal state.  This multi-state as 
well as active behavior of the Elevator class can be 
implemented as follows. 

 
class Elevator implements Runnable {

final static INCONVENIENT = -99999;
ElevatorState state =

new ElevatorNormal();
//delegating state-specific requests
//to state object
public int convenience(){

state.convenience(this);
}
public void haltBut() {

state.haltBut(this);
}
public void restartBut() {

state.restartBut(this);
}
// state diagram actions
public void halt(){

stop();
suspendThread();

}
public void suspendThread(){

//some code
}
public void resume(){

StopNeeded? 

MoveNeeded 

MoveNext

SleepASecond 

NotifyArrival 

OpenDoor 

GetOff 

GetOn 

CloseDoor 

FindDirection 

[YES] 

[NO]

[YES] 

[NO]

Stop 



//some code
}
// activity diagram code
public void run(){

// as before
}
.....

}
class ElevatorState {

//contains empty declarations for
//all methods in the subclasses

}
class ElevatorNormal extends

ElevatorState {
public int convenience(Elevator e){

// as before
}
public void haltBut(Elevator e){

e.halt();
e.state = new ElevatorHalted();

}
}
class ElevatorHalted extends

ElevatorState {
public int convenience(Elevator e){

return e.INCONVENIENT;
}
public void restartBut(Elevator e){

e.resume();
e.state = new ElevatorNormal();

}
}

 
8 The Code Generating System 

The proposed approach has been implemented in our 
system, dCode, which automatically generates executable 
Java code from the specifications of the object and dynamic 
models of a system. dCode takes as input specifications of 
the object diagram, state diagrams and activity diagrams in 
Design Schema List (DSL) language [25]. DSL is a 
specification language, which was developed by other 
members of our research group to easily represent OMT 
diagrams in an understandable text format, and to facilitate 
data exchanges among tools and members of the group.  
Nakashima et al. [26] have developed a tool through which 
OMT diagrams can be drawn interactively and then 
translated automatically into DSL. The output from dCode 
is Java code. The system generates implementation code for 
different classes in the following way.  
 
8.1 Generating Code for Domain Classes 

Classes that appear in the object diagram are called 
domain classes. Declaration code for the domain classes, 
which contains attributes and methods, is generated from the 
information of the object diagram. Detail implementation 
code for each class is generated depending on the class type 
and whether it has any associated state diagram and/or 
activity diagram, as explained below. 
 
8.1.1 Controller 

In any application, there is typically one class that plays 
the role of a controller. The Controller initializes the system 

and all permanent objects in the system. If the permanent 
objects are active, new threads for them are also created.  
The main() method is defined in the  Controller which 
instantiates an instance of the  Controller. dCode generates 
the following code for the Controller class of the 
elevator application. 
 

class Controller {
public Elevator[] elevatorList =

new Elevator[3];
public Floor[] floorList =

new Floor[6];
public Controller() { // constructor
for (int i=0;i<floorList.length;

i++)
floorList[i] = new Floor(i,this);

for (int i=0;i<elevatorList.length;
i++) {

elevatorList[i]=
new Elevator(i,this);

new Thread(elevatorList[i]).start();
}
}
public static void

main(String args[]){
Controller c = new Controller();

.....
}

}
 
8.1.2 Classes having Activity Diagrams 

If a domain class has an activity diagram, the class 
implements the Runnable interface, so that separate threads 
can be started for its objects while instantiating them.  
run() method is defined in the class, as already explained 
in Section 6. For each activity in the activity diagram, a 
method is declared in the class. The user enters body code 
for these methods. 
 
8.1.3 Classes having State Diagrams 

If a domain class has a state diagram, an attribute state is 
defined that represents the current state of objects of the 
class. For each event in the state diagram, a method is 
defined that delegates the event to the state object. For each 
action in the state diagram, a method is declared. The user 
enters body code for the action methods. 
 
8.2 Generating Code for State Classes 

If a domain class has a state diagram, additional classes 
are created that implement the state-specific behavior of the 
class. We call these extra classes as state classes. State 
classes are generated as follows. 
 
1. To provide a common interface to all state classes, an 

abstract class is defined. The name of the class is obtained 
by suffixing “State” to the name of the corresponding 
domain class. It contains empty declarations of operations 
for all events in the state diagram. Each state class has 
implementation code for its own events (operations).  

2. A class is defined for each state. The name of the class is 



derived from the name of the state. If the state is a 
substate of another state then it can make an OR-type or 
AND-type state hierarchy. 

a) OR-Type State Hierarchy: Classes corresponding to 
the substates become subclasses of the class that 
corresponds to the superstate. Transitions from the 
superstate are implemented as methods in the superclass 
and are derived in the subclasses. Transitions from the 
substates are implemented as methods in the subclasses. 

b)  AND-Type State Hierarchy: The class corresponding 
to the superstate of AND-states becomes a composite 
class that contains as many objects as the substates.  
For each substate, an attribute is defined. The name and 
type of the attribute are derived from the name of the 
substate.  For each event on the substates, a method is 
defined that calls the method(s) for that event defined in 
the class(es) for the substate(s).  The class that 
corresponds to an AND-state becomes an abstract class 
and serves as an interface for its own subclasses. 

3. An event on any state becomes a method in the 
corresponding class. Body code for the method is also 
completely generated, which contains a call to the action 
of the transition and code for adjusting the new state.  

 
9 Comparison with Rhapsody 

Rhapsody [27,14], which is a successor of O-Mate [28], 
is a tool that allows creating object diagram, state transition 
diagrams and message sequence charts for an application 
and then generates C++ code for the application. Because 
Rhapsody is the only tool of its kind (we mention some 
other tools in the next section), we compare dCode to 
Rhapsody. 

 
Rhapsody does not consider activity diagrams to 

represent behavior of active objects. It only uses state 
transition diagrams to represent the behavior of classes of 
objects, so we can compare only the code generated from 
state diagrams.  The details of converting a state diagram 
into code are not fully given in the papers [27,28], where the 
tool is reported.  However, the mechanics can be 
understood by looking at the code generated by Rhapsody. 
Like dCode, Rhapsody also treats states as separate objects.  
But the way it handles events and state hierarchy is quite 
different to that of our approach. 
 
9.1 Code Generated by Rhapsody 

Rhapsody represents all states and events as classes. 
First, four classes: AndState, ComponentState, 
OrState and LeafState are derived from an abstract 
class State.  The four classes implement respectively the 
general behavior of four types of states: superstate of 
AND-states, AND-state, superstate of OR-states and leaf 
state.  Each state of the state diagram become a class and is 
subclassed from one of the above four classes depending on 
the state type.  The domain class that corresponds to the 
state diagram maintains one instance each of all the state 
classes.  Each state object has a pointer to its superstate 
object, and a method boolean in() that returns true if 

the state is active. Similarly, there is a general OMEvent 
class from which all the event classes are derived. For each 
transition, there is a method defined in the domain class. As 
shown in Figure 5, when an object of the domain class 
receives an outside request (event), it creates an event object 
(steps 1 and 2).  Then it calls the takeEvent
(EventId) method of the active state object and passes 
the event as an argument (steps 3 and 4). This method 
contains a switch statement that searches out a transition on 
this event from the current state (step 5). If there is a 
transition, the corresponding method in the domain class is 
made executed (step 6a), which updates the current state of 
the domain class (step 7). If there is no transition, the event 
is sent to the object representing the parent state (step 6b).  
All this when sum up takes a considerable amount of time. 
 
9.2 Code Generated by dCode 

In the code generated by dCode, states become classes 
(inherited from a common interface class) but events 
become methods. Because state hierarchy is implemented by 
the inheritance mechanism, state objects do not need to have 
pointers to their superstate objects.  In each state class, 
methods are defined that correspond to the transitions going 
out of the state. 

 
When an event occurs on which there is a transition, the 

corresponding method in the current state object is executed. 
If there is no transition on an event, there will be no method 
in the current state object, and as a result only the empty 
method in the abstract interface class will be executed. This 
is a fast operation. That is why, the time taken to process an 
event without transition is markedly short. In the case of a 
transition, the time is longer but as the code does not contain 
any conditional statement, the time is still shorter than that 
of Rhapsody's code. 
 
9.3 Comparing the Code Generated by Rhapsody and 
dCode 
 

We used a simple example having one state diagram and 
compared the code generated by Rhapsody to that of dCode. 
To have a fair comparison, we rewrote the code generated 
by Rhapsody in Java, because dCode generates Java code 
whereas Rhapsody generates C++ code. Findings of the 
comparison are as follow; 
 
1. Code generated by dCode is more compact.  The 

original C++ code generated by Rhapsody was too much 
long. After rewriting it in Java, the source code becomes 
shorter but is still approximately five times longer than 
the code generated by dCode, as shown in Table 1. In 
addition, as all states and events become subclasses of 
the various classes explained above, the number of 
classes is much more than that of our code.  

2. Our code is more efficient than Rhapsody's code. To 
compare the efficiency of the code generated by dCode 
and Rhapsody, we performed an experiment in which the 
same sequence of 1000 requests was sent to the class that 
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 Rhapsody dCode
Source code: No. of lines 1031 231
Source code: No. of bytes 19891 5410
No. of classes 26 14

 
Table 1: Comparing the compactness of the code generated 
by Rhapsody and dCode 
 
3. Rhapsody code is difficult to understand. As explained 

above, though Rhapsody implements state-specific 
behavior in separate classes, it puts the 
transition-selection code in the switch statement inside 
the takeEvent(EventId) method of the state 
classes. Actual transitions are implemented as methods in 
the corresponding domain class, which are called when 
the current state object succeeds in finding a transition on 

state object 
e() method 

e object 
(3) Execute the transition code 

e code generated by Rhapsody 

 code generated by dCode 



an event. This makes the code difficult to understand. 
Our code converts each event into an operation call. The 
appropriate method is selected on the principle of 
polymorphism. The transition code is put in separate 
methods in the corresponding state classes. All the states 
and transitions are thus explicit without using any 
conditional statements.  This contributes to making the 
code more understandable. 

 
 
 Rhapsody 

(x) 
(millisecs) 

DCode 
(y) 

(millisecs) 

Improvement 
(x-y)/x*100 

Total time for  
Events without 
Transitions (a) 

 
127.800 54.3000

Average time per 
Event without 
Transition 
(a/556) 

 
0.2299 .0977 57.50%

Total time for  
Events having 
Transitions (b) 

 
144.7500 114.6500

Average time per 
Event having 
Transition 
(b/444) 

 
0.3260 0.2582 20.80%

Total time for 
all events  
(a+b) 

 
272.5500 168.9500

Average time  
Per event 
((a+b)/1000) 

 
0.2726 0.1690 38.00%

 
Table 2: Comparing the efficiency of the code generated by 
Rhapsody and dCode 
 
 
10 Related Work 

The most related work is that of Harel and Gery [27,28] 
whose tool, Rhapsody [14], generates C++ code from the 
object and dynamic models.  As shown in the previous 
section, our code is more compact, efficient and simple than 
that of Rhapsody. 

 
In addition to Rhapsody, there are other commercially 

available CASE tools that support graphical editors to draw 
various OMT diagrams and then generate some of the 
implementation code from them. The major one is Rational 
Rose [6], which provides interactive graphical editors to 
make various UML [24] and OMT diagrams.  Because 
Rational Rose is basically a modeling and documentation 
tool, it generates only header files from the object model 
and does not generate any code from the state diagrams.  
Object Oriented Designer [9], Object Domain [7] and 
MacA&D [8] are other tools that also generate only header 
files from the object model.  Some of the tools, such as 
StateMaker [10], ROOM [11], Graphical Designer [12] and 
StP [15] , can generate code from the state diagrams too, but 
they do not usually support state hierarchy and concurrent 

states in the state diagrams. 
 

Our mechanism of converting a state diagram into 
implementation code has some similarity with the State 
pattern [29], but State pattern neither addresses the issue of 
state hierarchy nor does it address concurrency within state 
diagrams. Joung et al. [30] show how icons can be added to 
the state diagrams and then code can be generated that 
animates the system. 

 
Our earlier paper [15] demonstrates how dynamic model, 

represented as a single state diagram, can automatically be 
converted into Java code.  The other paper [17] includes 
treatment of concurrent states within state diagrams.  The 
present study focuses on generating code from the complete 
dynamic model that is represented by multiple state 
diagrams and activity diagrams. It also deals with active 
objects, which have their own thread of control. 

 
11 Conclusions 

A new method has been proposed to implement the 
dynamic behavior of an application, which is represented as 
a set of state transition diagrams and activity diagrams.  To 
implement a state diagram, an object-oriented approach has 
been used where each state becomes a class and each 
transition becomes an operation.  Inheritance mechanism is 
used to implement OR-type state hierarchy and the 
mechanism of object composition is used to represent 
AND-type state hierarchy. Activity diagrams, which 
represent the behavior of active objects, are implemented as 
Java threads. The method deals with intra-object 
concurrency (within a single object) and multiple thread 
concurrency (among several objects).  The method has 
been implemented in our system, dCode, which 
automatically generates Java code from the object diagram, 
state diagrams and activity diagrams of a system.  The 
code generated by dCode is approximately five times more 
compact and 38% more efficient than that of Rhapsody. 
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