
Implementing the Dynamic Behavior Represented as
Multiple State Diagrams and Activity Diagrams

Jauhar Ali1 and Jiro Tanaka2

Institute of Information Sciences and Electronics,
University of Tsukuba, Japan

1 Current affiliation is Software Research Associates (SRA) Inc., 3-12 Yotsuya, Shinjuku-ku, Tokyo 160-0004 Japan
 E-mail: jauhar@sra.co.jp
2 Institute of Information Sciences and Electronics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
 E-mail: jiro@computer.org

Abstract
A system is introduced which automatically generates

implementation code from the object and dynamic models
of an application. We found that the behavior of active
objects can well be represented by activity diagrams rather
than state diagrams. The paper first explains our approach
to convert state diagrams as well as activity diagrams into
implementation code. The paper then describes our system,
dCode, which automatically generates executable Java code
from the object diagram, state diagrams and activity
diagrams of an application. The paper also presents the
results of the experiment in which the code generated by
dCode was compared to that of Rhapsody.

Keywords:
Code Generation, OOA/OOD, Dynamic Modeling, CASE

1 Introduction

Object Oriented (OO) software is a collection of
interacting objects. Classes of objects have structural
properties as well as behavior. There are many OO
methodologies [1,2,3,4] that help find the structural
properties and behavior of a system by creating its different
models. Object Modeling Technique (OMT)[5], which is a
popular OO methodology, represents the static aspects of a
system by object model and its dynamic behavior by
dynamic model.

OMT and other OO methodologies describe in sufficient

detail the steps to be followed during the analysis and design
phases but fail to show how the analysis and design models
of a system shall be converted into implementation code.
For a large fraction of programmers, it is quite difficult to
write code from the analysis and design models. This is
especially true in the case of the dynamic model. It would be
ideal to have CASE tools that can generate or help to
generate implementation code from the analysis and design
models.

Most of the present CASE tools [6,7,8,9] generate only

declarative code like header files from the object model.
Generating header files from the object model is
straightforward because of its static nature. The dynamic
model is considered difficult to implement due to its
dynamic nature. A few CASE tools [10,11,12,13,14] can

generate code from state transition diagrams. However, most
of them do not support state hierarchy and concurrency
within state diagrams except Rhapsody [14] which is a tool
that generates C++ code from the object and dynamic
models.

We have been working on automatic code generation

from the dynamic model, which is represented by a set of
state transition diagrams. In this context, we already
developed a system [15] that automatically converts the
dynamic model represented by a simple state diagram into
executable Java code [16]. Later, the system was expanded
to support concurrent states in the state diagram, thus
allowing intra-object concurrency [17]. Both of our previous
systems can generate code from the dynamic model that is
represented by a single state diagram. However, a real
system needs several state diagrams to represent its behavior.
In the present study, a system is introduced to automatically
generate implementation code from the object and dynamic
models having multiple state diagrams. We realized that
activity diagrams could well represent the behavior of active
objects, which keep their own control. The paper first
explains our approach to convert state diagrams as well as
activity diagrams into code. While converting the dynamic
model into code, we also refer to the object model to
generate the initialization code properly. The paper then
describes our system, dCode, which automatically generates
executable Java code from the object diagram, state
transition diagrams and activity diagrams of an application.
We also compare the code generated by dCode to that of
Rhapsody.

2 The Elevator Example
We illustrate our approach using an application that
simulates a system controlling three elevators and six floors.
The problem is a simplified version of the lift problem
presented at the Forth International Workshop on Software
Specification and Design [18]. The system has the following
constraints.

1. Each elevator has a set of buttons, one for each floor.

These illuminate when pressed and cause the elevator to
visit the corresponding floor. The illumination is
cancelled when the elevator visits the corresponding
floor.

2. Each floo

have only
and one
illuminate
when an
the desire
the latter
only one s

3. When an
remain at
await furt

4. All reque
eventually

5. All reque
eventually
direction

3 Designing

To desig
that there m
of the over
Elevator
We used the
lines betwe
them.

When a

sends a req
desired direc
the Elevator
request. In
integer valu
The elevato

Floor Elevator

Controller

AssignRequest(Floor,Direction)

6

6

3

3

upList
downList
Figure 1: Object model for the elevator simulation s

r has two buttons (the ground and the top floors
 one button each), one to request an up-elevator
to request a down-elevator. These buttons
 when pressed. The illumination is cancelled

elevator visits the floor and is either moving in
d direction, or has no outstanding requests. In
case, if both floors' request buttons are pressed,
hould be cancelled.

 elevator has no requests to service, it should
 its final destination with its doors closed and
her requests.
sts for elevators from floors must be serviced
, with all floors given equal priority.

sts for floors within elevators must be serviced
, with floors being serviced sequentially in the

of travel.

 the Elevator System
n the elevator simulation system, we believe

ust be a Controller class that keeps control
all system and at least two more classes:
and Floor. Figure 1 shows the object diagram.
 OMT notation except that the arrow headed

en classes show possible messages between

button is pressed on a floor, the Floor object
uest to the Controller for an elevator in the
tion. The Controller sends a message to each of

 objects asking its convenience for servicing the
 response, each of the Elevator objects gives an
e representing its convenience for the request.
r which returns the highest value is the most

convenient, and the
Each of the elevator
has any outstanding
elevator visits the de
to the Floor object.
waiting on the elev
presses the destinat
elevator then move
order. When an e
destination button fo
whose destination w

In a real elevato

various floors and pr
However, to make th
user (operator) of th
clicking at them wi
come at the floor a
direction. The Floo
persons waiting at
person is randomly
waiting at the floor w
object also sends o
Controller.

4 The Controller Cl

Controller i
flow of control of a
system as a whole.
Controller is to initi
objects of the system
exist throughout the
are created for a shor

CallUpElevator()
CallDownElevator()
AddToUpList()
AddToDownList()
UpGenOn()
DownGetOn()

GetOn(Person)
curFloor
direction
button[1..10]
UpRequest(this)
DownRequest(this)
UpArrived(this)
DownArrived(this)
ystem

 Controller assigns the request to it.
s runs in parallel and checks whether it
 requests. If there is a request, the
sired floor and sends an arrival message
 The floor gets all the persons that were
ator. Each person, while getting on,
ion button inside the elevator. The
s to the required floors in sequential
levator stops at a floor, it resets the
r that floor and gets all the persons off

as that floor.

r system, persons come in randomly at
ess the buttons in the desired directions.
e system a bit interactive, we made the
e system to press the floor buttons by
th mouse, meaning that a person has
nd has pressed a button in the desired
r object then increments the number of

the floor. The destination floor for a
 determined. If there is no person
hen a floor button is pressed, the Floor

ut a callElevator message to the

ass
s a special class that keeps the main
system [15,17,19,20] and represents the
One of the main responsibilities of the
alize the system and create permanent
. Objects are called permanent if they
system is running. Temporary objects
t time while the system is running.

Convenience(Floor,Direction)
AssignRequest(Floor,Direction)
FindDirection()
MoveNext()
…..

Figure 2: State diagram for Floor class

After the initialization of the system, control mostly
resides in the Graphical User Interface (GUI) component of
the system. Controller receives messages from the GUI
when a user interacts with the system. In response to these
messages (events), Controller possibly changes the state of
the system and sends messages to other objects in the
system. Typically, there is only one controller in a system,
so there is only one object instance of this class.

The Controller class in the elevator example is a

uni-state class and does not need a state diagram. It
initializes the system by creating permanent objects (6
instances of Floor and 3 instances of Elevator). After
initialization, control of the system resides in the click-able
buttons that represent the up and down buttons at each floor.
While the system is running, the Controller always
behaves in the same way whenever it receives incoming
messages from the Floor objects. So we do not need to do
anything special about implementing the dynamic behavior
of the Controller.

5 State Diagrams

Objects provide a number of services, which are
accessed or get executed by sending a message to them.
Objects often have different states and the availability of
services provided by the objects depends upon the state they
are currently in. Such objects can be named as multi-state
objects. A state diagram usually represents the behavior of
a multi-state object. Unlike the Controller class, the

Floor class in the el
To represent the beh
Harel's statecharts [21
AND-type state hier
diagram for the Floor

5.1 Converting a Stat

To implement a
approach is used wher
transition becomes a
substates of a supersta
corresponds to the sup
if only one of the sub
when the superstate
subclassed from an ab
interface for the stat
interface class for
FloorState. This
resemblance of the sta
class hierarchy in an
transitions of the supe
methods of the parent

As can be seen in

diagram become meth
For example, the c
actions become meth
maintains an attribute
value of this attribute s

BothWait DownWait

DownButton/addToDownList

upButton/callUpElevator

UpArrived(Elevator)/upGetOn(Elevator)

UpWait

UpButton/addToUpList

NoWait
upButton/callUpElevator

UpArrived(Elevator)/upGetOn(Elevator)

call

downArrived(Elevator)/
downGetOn(Elevator)
DownButton/addToDownList
UpButton/addToUpList
evator exa
avior of a
,22,23], wh
archy. F
 class.

e Diagram
 state di
e each sta
n operatio
te become
erstate. S
states can

is active.
stract clas

e classes.
the state
approach

te hierarch
 OO prog
rstate jus

class.

 Figure 3,
ods in the
allUpEl

ods in Flo
 state o
hows the
downButton/
DownElevator
downButton/
callDownElevator
downArrived(Elevator)/
downGetOn(Elevator)
mple, is a multi-state class.
 multi-state class, we use
ich can contain OR-type or
igure 2 shows the state

 into Code
agram, an object-oriented
te becomes a class and each
n in that class. OR-type
 subclasses of the class that
ubstates are called OR-type
 be active at a given time
 All the state classes are
s that serves as a common
 We named the common
 classes of Floor as
 is adopted due to the
y in a state diagram and the
ram. The substates inherit

t like subclasses inherit the

 all the actions in the state
corresponding domain class.
evator and upGetOn
or class. The Floor class
f FloorState type. The

current state of the Floor

Figure 3: Class structure of the Floor class and its companion classes

object. Objects that communicate with the Floor object do
not need to know about state classes (subclasses of
FloorState). They just send requests to the Floor, which
become events for it. The Floor object delegates all the
requests (events) to its state object. If there is a transition on
the event, the corresponding operation in one of the state
classes will get executed and the state of the Floor will
change.

As there are many Floor objects, the methods of the
subclasses of the FloorState class, which correspond to
state transitions, should know which instance of the Floor
class is going to change state while the methods are
executed. Due to this reason, the Floor object passes itself to
the state object as a parameter, whenever it delegates outside
requests (events) to the state object. Part of the
implementation code for the Floor class and its
corresponding state classes is shown below.

class Floor {
//default state
FloorState state = new NoWait();

//delegates all events to state
//and passes itself as parameter
upButton(){

state.upButton(this);
}
upArrived(Elevator e){

state.upArrived(this, e);
}
.....

//actions in the state diagram

//become methods here
callUpElevator(){.....}
addToUpList(){.....}
.....

}
class FloorState {

//contains empty declarations for
//all methods in the subclasses

}
class NoWait extends FloorState {

//each transition becomes a method
upButton(Floor f){

// call action
f.callUpElevator();
//change state
f.state = new UpWait();

}
downButton(Floor f){

f.callDownElevator();
f.state = new DownWait();

}
}
class UpWait extends FloorState {

upButton(Floor f) {
f.addToUpList();

}
downButton(Floor f){

f.callDownElevator();
f.state = new BothWait();

}
upArrived(Floor f, Elevator e){

f.upGetOn(e);
f.state = new NoWait();

}
}
.....

UpButton(Floor f)
DownButton(Floor f)
UpArrived(Floor f,Elevator e)
DownArrived(Floor f,Elevator e)

BothWait

UpButton(Floor f)
DownButton(Floor f)
DownArrived(Floor f,Elevator e)

DownWait

UpButton(Floor f)
DownButton(Floor f)
UpArrived(Floor f,Elevator e)

UpWait

UpButton(Floor f)
DownButton(Floor f)

NoWait

UpButton(Floor f)
DownButton(Floor f)
UpArrived(Floor f,Elevator e)
DownArrived(Floor f,Elevator e)

FloorState
FloorState state

CallUpElevator()
CallDownElevator()
AddToUpList()
AddToDownList()
UpGenOn()
DownGetOn()

Floor

5.2 Optimizing the Code
As can be seen in the code above, when an event occurs,

a method in the abstract class (FloorState) is called
which is a fast operation. When there is a transition,
however, a method in one of the subclasses of the
FloorState class for that operation is executed. The
method dynamically creates a new instance representing the
new state. The dynamic creation of objects makes the code a
bit less efficient.

Optimization of the code can be achieved by creating an

instance of each of the subclasses of the FloorState
class beforehand and then assigning one of these instances
to the state object while a transition is executed. As the
subclasses of FloorState only contain operations and do
not have any data, their instances can be shared among
different Floor objects. Therefore, we make these
instances as class members (static) in the Floor class.
Also, since these instances are only meant to be assigned to
the state object and should not be changed, we declare them
as constants (final). Following is part of the optimized
code for the Floor class and its associated state classes.

class Floor {

// creat state objects only once
final static FloorNoWait NO_WAIT

= new FloorNoWait();
final static FloorUpWait UP_WAIT

= new FloorUpWait();
final static FloorDownWait DOWN_WAIT

= new FloorDownWait();
final static FloorBothWait BOTH_WAIT

= new FloorBothWait();

//default state
FloorState state = NO_WAIT;
.....

}
class FloorNoWait extends FloorState {

upButton(Floor f){
f.callUpElevator();
f.state = UP_WAIT;

}
downButton(Floor f){

f.callDownElevator();
f.state = DOWN_WAIT;

}
}

5.3 Concurrency within State Diagrams

State diagrams can have concurrent states (AND-states).
AND-states become active simultaneously whenever their
superstate becomes active. As already described, in our
approach an active state is represented by an object instance.
For concurrent states, we need a mechanism that guarantees
the creation of as many objects as the number of the
concurrent substates whenever their superstate becomes
active. That is why, we represent the superstate of
AND-substates as a composite class that owns objects of
other classes.

The composite class has references to the classes

corresponding to the AND-substates. When the superstate of
AND-substates becomes active, the corresponding
composite class gets instantiated. The composite object then
instantiates all the classes for which it has references. The
instantiation of the composite class thus guarantees the
instantiation of the classes that correspond to the
AND-substates. This behaves like activating many states
simultaneously. Similarly, when the composite object is
deleted, all the objects it owns are also deleted. This behaves
like leaving all the AND-substates at once when their
superstate becomes inactive.

6 Activity Diagrams

State diagrams work well for representing the behavior
of passive objects, which do not usually keep control.
They get control only when some other object sends a
message to them causing the execution of one of their
methods. After having completed the execution, control is
transferred back to the object that had sent the message.

In real systems we sometimes encounter active objects,

which keep their own control. They mostly perform their
operations in a continuous loop. During the execution of the
methods, they can send messages to execute methods in
other objects and cause a temporary transfer of control to
those objects. Control is transferred back to the active
objects as soon as the execution of the methods in other
objects is finished. For example, Elevator is an active class
and does not wait for incoming messages from other objects.
Instead, it executes a continuous loop and in each iteration,
it checks whether there is any outstanding request that
should be serviced.

We observed that state diagrams could not represent

well the behavior of active objects, because the transitions in
state diagrams are mostly triggered on the occurrence of
some external events. We represent the behavior of active
objects by an activity diagram. An activity diagram is like a
state diagram except that the transitions are not triggered by
external events [24]. Each node in the activity diagram
shows an activity or possibly a condition, whereas in the
state diagram it shows a state. As soon as the activity is
performed, the transition is triggered and a new activity
starts execution. In an activity diagram, the object itself
determines when to execute a transition. It does not have to
wait for other objects to send it messages, which become
events to trigger the transitions. Figure 4 shows the activity
diagram for the Elevator.

In the proposed approach, an active class is

implemented as a Java thread. Therefore, each Elevator
object has its own control. The continuous loop, which can
be seen in the activity diagram, is placed inside the run()
method. Each activity becomes a method in the class. If
a node represents a condition, e.g., MoveNeeded?, it also
becomes a method but returns a boolean value. In the
loop, each method is called in the sequence in which it

appears in the activity diagram. The method that
represents a condition is called from inside an if-statement.
Sub-activities, e.g., NotifyArrival and OpenDoor
inside the Stop activity, become separate methods as well,
and they are called from the method that corresponds to the
super-activity (in this case the Stop activity). Following is
the implementation code generated from the activity
diagram of the Elevator.

Figure 4: Activity diagram for Elevator class

class Elevator implements Runnable {
.....
public void run() {

for (;;) {
if (stopNeeded()) stop();
if (moveNeeded()){

findDirection();
moveNext();

}
sleepASecond();

}
}
void stop() {

notifyArrival();
openDoor();
getOff();
getOn();
closeDoor();

}
.....

}
7 Classes having both State and Activity Diagrams

Classes of objects may have more than one aspect,
which should be implemented separately. An active object,
whose behavior is represented by an activity diagram, can
also be a multi-state object and, therefore, need a state
diagram showing its multi-state behavior. The Elevator
class in the example is an active but uni-state class. (Here
we are using the term multi-state in its strict meaning that
suggests state-transitions triggered by external events, which
are asynchronous, rather than internal signals, which merely
show the completion of some actions.) Whenever the
Controller object sends a message to the Elevator object
asking its convenience, the Elevator object returns its
convenience as an integer value. Similarly, each time the
Controller object assigns an elevator to some floor, the
Elevator object records the request as an outstanding request.
This uni-state behavior of the Elevator class is not shown
in the activity diagram (Figure 4). If the Elevator had also
been a multi-state class, we would have had to draw a state
diagram in addition to the activity diagram, and to
implement it in a way similar to the Floor class.

Suppose the elevator system has a Halt and a Restart

buttons for each elevator, which are used by a maintenance
operator to do his maintenance job. The elevator now has
two states: Normal (default) and Halted. In the Normal state
the elevator acts just like before. However, when the Halt
button is pressed, the halt action is executed which makes
the elevator stop at the current floor and suspends the thread.
In the Halted state, the elevator returns INCONVENIENT
whenever its convenience is asked by the Controller. The
Controller will not be able to assign a request to an Elevator
in the Halted state. When the Restart button is pressed, the
elevator goes back to the Normal state. This multi-state as
well as active behavior of the Elevator class can be
implemented as follows.

class Elevator implements Runnable {

final static INCONVENIENT = -99999;
ElevatorState state =

new ElevatorNormal();
//delegating state-specific requests
//to state object
public int convenience(){

state.convenience(this);
}
public void haltBut() {

state.haltBut(this);
}
public void restartBut() {

state.restartBut(this);
}
// state diagram actions
public void halt(){

stop();
suspendThread();

}
public void suspendThread(){

//some code
}
public void resume(){

StopNeeded?

MoveNeeded

MoveNext

SleepASecond

NotifyArrival

OpenDoor

GetOff

GetOn

CloseDoor

FindDirection

[YES]

[NO]

[YES]

[NO]

Stop

//some code
}
// activity diagram code
public void run(){

// as before
}
.....

}
class ElevatorState {

//contains empty declarations for
//all methods in the subclasses

}
class ElevatorNormal extends

ElevatorState {
public int convenience(Elevator e){

// as before
}
public void haltBut(Elevator e){

e.halt();
e.state = new ElevatorHalted();

}
}
class ElevatorHalted extends

ElevatorState {
public int convenience(Elevator e){

return e.INCONVENIENT;
}
public void restartBut(Elevator e){

e.resume();
e.state = new ElevatorNormal();

}
}

8 The Code Generating System

The proposed approach has been implemented in our
system, dCode, which automatically generates executable
Java code from the specifications of the object and dynamic
models of a system. dCode takes as input specifications of
the object diagram, state diagrams and activity diagrams in
Design Schema List (DSL) language [25]. DSL is a
specification language, which was developed by other
members of our research group to easily represent OMT
diagrams in an understandable text format, and to facilitate
data exchanges among tools and members of the group.
Nakashima et al. [26] have developed a tool through which
OMT diagrams can be drawn interactively and then
translated automatically into DSL. The output from dCode
is Java code. The system generates implementation code for
different classes in the following way.

8.1 Generating Code for Domain Classes

Classes that appear in the object diagram are called
domain classes. Declaration code for the domain classes,
which contains attributes and methods, is generated from the
information of the object diagram. Detail implementation
code for each class is generated depending on the class type
and whether it has any associated state diagram and/or
activity diagram, as explained below.

8.1.1 Controller

In any application, there is typically one class that plays
the role of a controller. The Controller initializes the system

and all permanent objects in the system. If the permanent
objects are active, new threads for them are also created.
The main() method is defined in the Controller which
instantiates an instance of the Controller. dCode generates
the following code for the Controller class of the
elevator application.

class Controller {
public Elevator[] elevatorList =

new Elevator[3];
public Floor[] floorList =

new Floor[6];
public Controller() { // constructor
for (int i=0;i<floorList.length;

i++)
floorList[i] = new Floor(i,this);

for (int i=0;i<elevatorList.length;
i++) {

elevatorList[i]=
new Elevator(i,this);

new Thread(elevatorList[i]).start();
}
}
public static void

main(String args[]){
Controller c = new Controller();

.....
}

}

8.1.2 Classes having Activity Diagrams

If a domain class has an activity diagram, the class
implements the Runnable interface, so that separate threads
can be started for its objects while instantiating them.
run() method is defined in the class, as already explained
in Section 6. For each activity in the activity diagram, a
method is declared in the class. The user enters body code
for these methods.

8.1.3 Classes having State Diagrams

If a domain class has a state diagram, an attribute state is
defined that represents the current state of objects of the
class. For each event in the state diagram, a method is
defined that delegates the event to the state object. For each
action in the state diagram, a method is declared. The user
enters body code for the action methods.

8.2 Generating Code for State Classes

If a domain class has a state diagram, additional classes
are created that implement the state-specific behavior of the
class. We call these extra classes as state classes. State
classes are generated as follows.

1. To provide a common interface to all state classes, an

abstract class is defined. The name of the class is obtained
by suffixing “State” to the name of the corresponding
domain class. It contains empty declarations of operations
for all events in the state diagram. Each state class has
implementation code for its own events (operations).

2. A class is defined for each state. The name of the class is

derived from the name of the state. If the state is a
substate of another state then it can make an OR-type or
AND-type state hierarchy.

a) OR-Type State Hierarchy: Classes corresponding to
the substates become subclasses of the class that
corresponds to the superstate. Transitions from the
superstate are implemented as methods in the superclass
and are derived in the subclasses. Transitions from the
substates are implemented as methods in the subclasses.

b) AND-Type State Hierarchy: The class corresponding
to the superstate of AND-states becomes a composite
class that contains as many objects as the substates.
For each substate, an attribute is defined. The name and
type of the attribute are derived from the name of the
substate. For each event on the substates, a method is
defined that calls the method(s) for that event defined in
the class(es) for the substate(s). The class that
corresponds to an AND-state becomes an abstract class
and serves as an interface for its own subclasses.

3. An event on any state becomes a method in the
corresponding class. Body code for the method is also
completely generated, which contains a call to the action
of the transition and code for adjusting the new state.

9 Comparison with Rhapsody

Rhapsody [27,14], which is a successor of O-Mate [28],
is a tool that allows creating object diagram, state transition
diagrams and message sequence charts for an application
and then generates C++ code for the application. Because
Rhapsody is the only tool of its kind (we mention some
other tools in the next section), we compare dCode to
Rhapsody.

Rhapsody does not consider activity diagrams to

represent behavior of active objects. It only uses state
transition diagrams to represent the behavior of classes of
objects, so we can compare only the code generated from
state diagrams. The details of converting a state diagram
into code are not fully given in the papers [27,28], where the
tool is reported. However, the mechanics can be
understood by looking at the code generated by Rhapsody.
Like dCode, Rhapsody also treats states as separate objects.
But the way it handles events and state hierarchy is quite
different to that of our approach.

9.1 Code Generated by Rhapsody

Rhapsody represents all states and events as classes.
First, four classes: AndState, ComponentState,
OrState and LeafState are derived from an abstract
class State. The four classes implement respectively the
general behavior of four types of states: superstate of
AND-states, AND-state, superstate of OR-states and leaf
state. Each state of the state diagram become a class and is
subclassed from one of the above four classes depending on
the state type. The domain class that corresponds to the
state diagram maintains one instance each of all the state
classes. Each state object has a pointer to its superstate
object, and a method boolean in() that returns true if

the state is active. Similarly, there is a general OMEvent
class from which all the event classes are derived. For each
transition, there is a method defined in the domain class. As
shown in Figure 5, when an object of the domain class
receives an outside request (event), it creates an event object
(steps 1 and 2). Then it calls the takeEvent
(EventId) method of the active state object and passes
the event as an argument (steps 3 and 4). This method
contains a switch statement that searches out a transition on
this event from the current state (step 5). If there is a
transition, the corresponding method in the domain class is
made executed (step 6a), which updates the current state of
the domain class (step 7). If there is no transition, the event
is sent to the object representing the parent state (step 6b).
All this when sum up takes a considerable amount of time.

9.2 Code Generated by dCode

In the code generated by dCode, states become classes
(inherited from a common interface class) but events
become methods. Because state hierarchy is implemented by
the inheritance mechanism, state objects do not need to have
pointers to their superstate objects. In each state class,
methods are defined that correspond to the transitions going
out of the state.

When an event occurs on which there is a transition, the

corresponding method in the current state object is executed.
If there is no transition on an event, there will be no method
in the current state object, and as a result only the empty
method in the abstract interface class will be executed. This
is a fast operation. That is why, the time taken to process an
event without transition is markedly short. In the case of a
transition, the time is longer but as the code does not contain
any conditional statement, the time is still shorter than that
of Rhapsody's code.

9.3 Comparing the Code Generated by Rhapsody and
dCode

We used a simple example having one state diagram and
compared the code generated by Rhapsody to that of dCode.
To have a fair comparison, we rewrote the code generated
by Rhapsody in Java, because dCode generates Java code
whereas Rhapsody generates C++ code. Findings of the
comparison are as follow;

1. Code generated by dCode is more compact. The

original C++ code generated by Rhapsody was too much
long. After rewriting it in Java, the source code becomes
shorter but is still approximately five times longer than
the code generated by dCode, as shown in Table 1. In
addition, as all states and events become subclasses of
the various classes explained above, the number of
classes is much more than that of our code.

2. Our code is more efficient than Rhapsody's code. To
compare the efficiency of the code generated by dCode
and Rhapsody, we performed an experiment in which the
same sequence of 1000 requests was sent to the class that

Figure 5: Conceptual view of th

corresponds to the state diagram. Out of thes
events, 444 caused transitions while the remain
events did not cause any transition and were i
For each event, the time taken to process the ev
calculated. We made all the action methods em
concentrated on measuring the time taken
executing transitions, i.e., changing states. T
more accurate results, we repeated the experim
times and calculated the average values. The exp
was performed on Sun SPARC Station 10. Ac
to the results of the experiment in Table 2, to pro
event that has no transition, our code is 57.50%
efficient than Rhapsody's code. For events
transitions, our code offers a 20.80% improveme
Rhapsody's code. The overall improvement tha
offers for all types of events is 38.00%.

(1) Event e occurs

(2) Create an event object (eObj)

(3) Find state objects that are currently active

Currently active
state object

TakeEvent(e) method

(4) Call takeEvent(eObj) method of the active state objects

Switch statement
Check if there is a

transition?

(5)

(6b) [No transition]
 Call takeEvent(e) method of the parent state
 Object unless there is no parent

Domain class
object

(1) Event e occurs

(2) Call method e() of the stat

(a) Execution sequence of th

(b) Execution sequence of the

Domain class

object
(6a) [Transition]
 Call the method that contains the transition code
(7) Execute the
 transition code
e executing code generated by Rhapsody and dCode

e 1000
ing 556
gnored.
ent was
pty and
 while
o have
ent 20

eriment
cording
cess an
 more

having
nt over

t dCode

 Rhapsody dCode
Source code: No. of lines 1031 231
Source code: No. of bytes 19891 5410
No. of classes 26 14

Table 1: Comparing the compactness of the code generated
by Rhapsody and dCode

3. Rhapsody code is difficult to understand. As explained

above, though Rhapsody implements state-specific
behavior in separate classes, it puts the
transition-selection code in the switch statement inside
the takeEvent(EventId) method of the state
classes. Actual transitions are implemented as methods in
the corresponding domain class, which are called when
the current state object succeeds in finding a transition on

state object
e() method

e object
(3) Execute the transition code

e code generated by Rhapsody

 code generated by dCode

an event. This makes the code difficult to understand.
Our code converts each event into an operation call. The
appropriate method is selected on the principle of
polymorphism. The transition code is put in separate
methods in the corresponding state classes. All the states
and transitions are thus explicit without using any
conditional statements. This contributes to making the
code more understandable.

 Rhapsody

(x)
(millisecs)

DCode
(y)

(millisecs)

Improvement
(x-y)/x*100

Total time for
Events without
Transitions (a)

127.800 54.3000

Average time per
Event without
Transition
(a/556)

0.2299 .0977 57.50%

Total time for
Events having
Transitions (b)

144.7500 114.6500

Average time per
Event having
Transition
(b/444)

0.3260 0.2582 20.80%

Total time for
all events
(a+b)

272.5500 168.9500

Average time
Per event
((a+b)/1000)

0.2726 0.1690 38.00%

Table 2: Comparing the efficiency of the code generated by
Rhapsody and dCode

10 Related Work

The most related work is that of Harel and Gery [27,28]
whose tool, Rhapsody [14], generates C++ code from the
object and dynamic models. As shown in the previous
section, our code is more compact, efficient and simple than
that of Rhapsody.

In addition to Rhapsody, there are other commercially

available CASE tools that support graphical editors to draw
various OMT diagrams and then generate some of the
implementation code from them. The major one is Rational
Rose [6], which provides interactive graphical editors to
make various UML [24] and OMT diagrams. Because
Rational Rose is basically a modeling and documentation
tool, it generates only header files from the object model
and does not generate any code from the state diagrams.
Object Oriented Designer [9], Object Domain [7] and
MacA&D [8] are other tools that also generate only header
files from the object model. Some of the tools, such as
StateMaker [10], ROOM [11], Graphical Designer [12] and
StP [15] , can generate code from the state diagrams too, but
they do not usually support state hierarchy and concurrent

states in the state diagrams.

Our mechanism of converting a state diagram into
implementation code has some similarity with the State
pattern [29], but State pattern neither addresses the issue of
state hierarchy nor does it address concurrency within state
diagrams. Joung et al. [30] show how icons can be added to
the state diagrams and then code can be generated that
animates the system.

Our earlier paper [15] demonstrates how dynamic model,

represented as a single state diagram, can automatically be
converted into Java code. The other paper [17] includes
treatment of concurrent states within state diagrams. The
present study focuses on generating code from the complete
dynamic model that is represented by multiple state
diagrams and activity diagrams. It also deals with active
objects, which have their own thread of control.

11 Conclusions

A new method has been proposed to implement the
dynamic behavior of an application, which is represented as
a set of state transition diagrams and activity diagrams. To
implement a state diagram, an object-oriented approach has
been used where each state becomes a class and each
transition becomes an operation. Inheritance mechanism is
used to implement OR-type state hierarchy and the
mechanism of object composition is used to represent
AND-type state hierarchy. Activity diagrams, which
represent the behavior of active objects, are implemented as
Java threads. The method deals with intra-object
concurrency (within a single object) and multiple thread
concurrency (among several objects). The method has
been implemented in our system, dCode, which
automatically generates Java code from the object diagram,
state diagrams and activity diagrams of a system. The
code generated by dCode is approximately five times more
compact and 38% more efficient than that of Rhapsody.

References
1. G. Booch, “Object Oriented Design with Applications”,

Benjamin/Cummings, Redwood, California, 1991.
2. P. Coad and E. Yourdon, “Object-Oriented Analysis”,

Prentice Hall, Eaglewood Cliffs, New Jersey, 1991.
3. I. Jacobson, “Object-Oriented Software Engineering: A

Use Case Driven Approach”, Addison Wesley, Reading,
Massachusetts, 1992.

4. P. Desfray, “Object Engineering: The Fourth
Dimension”, Addison Wesley, Reading, Massachusetts,
1994.

5. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen, “Object-Oriented Modeling and Design”,
Prentice Hall, Eaglewood Cliffs, New Jersey, 1991.

6. Rational Software Corporation, Rational Rose,
http://www.rational.com.

7. Object Domain Systems, Object Domain,
 http://www.object-domain.com/.

http://www.rational.com/
http://www.object-domain.com/

8. Excel Software, MacA&D,
 http://www.excelsoftware.com/index.html.
9. T. Kim, “Object Oriented Designer”,
 http://www.qucis.queensu.ca/Software-Engineering/
 blurb/ OOD.html, ftp.x.org.
10. MicroGold Software, NJ, 08807, StateMaker,
 http://www.worldwidemart.com/mattw/
 software/Windows3.X/demo/
11. ObjectTime Limited, ROOM,
 http://www.objectime.on.ca/.
12. Advanced Software Technologies, Graphical Designer,

http://www.advancedsw.com/.
13. Aonix, StP: Software Trough Pictures,
 http://www.ide.com/index.html.
14. i-Logix Inc., Rhapsody, http://www.ilogix.com.
15. J. Ali and J. Tanaka, “Automatic Code Generation from

the OMT-based Dynamic Model”, In Proceedings of the
Second World Conference on Integrated Design and
Process Technology, volume 1, pages 407-414, Austin,
Texas, December 1996.

16. J. Gosling, B. Joy, and G. Steele, “The Java Language
Specification”, Addison Wesley, Reading,

 Massachusetts, 1996.
17. J. Ali and J. Tanaka, “Generating Executable Code from

the Dynamic Model of OMT with Concurrency”, In
Proceedings of the IASTED International Conference
on Software Engineering (SE'97), pages 291-297, San
Francisco, California, USA, November 1997.

18. IEEE Computer Society, “Problem Set for the Fourth
International Workshop on Software”, Specification and
Design, April 1987.

19. J. Rumbaugh, “Controlling Code”, Journal of
Object-Oriented Programming, 6(2): 25 -30, May 1993.

20. J. Rumbaugh, “Objects in the Twilight Zone”, Journal
of Object-Oriented Programming, 6(3): 18 -23, June
1993.

21. D. Harel, “Statecharts: A Visual Formalism for
Complex systems”, Science of Computer Programming,
(8): 231 -274, August 1987.

22. D. Harel, “On Visual Formalisms”, Communications of
the ACM, 31(5): 514 -530, May 1988.

23. D. Harel and A. Naamad, “The STATEMATE
Semantics of Statecharts”, ACM Transactions on
Software Engineering and Methodology, 5(4): 293 -333,
October 1996.

24. Rational Software Corporation, “Unified Modeling
Language (UML)”, http://www.rational.com.

25. M. Harada, T. Fujisawa, M. Teradaira, K. Yamamoto,
and S. Hamada, “Refinement of Dynamic Modeling of
SOME, Automatic Layouting of Object Oriented
Design Schema, and Reverse Generation of Design
Schema from C++ Program”, In Object-Oriented
Symposium, pages 111 -118, Tokyo, Japan, 1996. (In
Japanese).

26. S. Nakashima, J. Ali, and J. Tanaka, “An Automatic
Layout System for OMT-based Object Diagram”, In
Proceedings of the Second World Conference on

Integrated Design and Process Technology, volume 2,
pages 82 -89, Austin, Texas, December 1996.

27. D. Harel and E. Gery, “Executable Object Modeling
with Statecharts”, Computer, 30(7): 31-42, 1997.

28. D. Harel and E. Gery, “Executable Object Modeling
with Statecharts”, In Proceedings of 18th International
Conference on Software Engineering, pages 246 –257,
IEEE, March 1996.

29. E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
“Design Patterns: Elements of Reusable
Object-Oriented Software”, Addison Wesley, Reading,
Massachusetts, 1995.

30. S. Joung, J. Ali, and J. Tanaka, “Automatic Animation
from the Requirements Specifications based on Object
Modeling Technique”, In Proceedings of International
Symposium on Future Software Technology (ISFST-97),
pages 133 -139, Xiamen, China, October 1997.

Jauhar Ali
Jauhar Ali is currently a chief engineer at the Software
Engineering Laboratory, Software Research Associates
(SRA) Inc., Japan. Before joining SRA, he worked as a
foreign researcher at the Institute of Information Sciences
and Electronics, University of Tsukuba. His research
interests include object-oriented methodologies, code
generation and reverse engineering. He is also interested in
program visualization.

Ali received a BSc in 1986 and a MSc in 1990 from the
University of Peshawar. He received a PhD in computer
science in 1998 from the University of Tsukuba.

Jiro Tanaka
Jiro Tanaka is a professor in the Institute of Information
Sciences and Electronics at the University of Tsukuba. His
research interests include visual programming, interactive
programming, computer-human interaction and software
engineering. He is especially interested in the software
design methodologies based on object orientation.

Tanaka received a BSc and a MSc from the University of
Tokyo in 1975 and 1977. He received a PhD in computer
science from the University of Utah in 1984. He is a
member of the ACM and the IEEE Computer Society.

http://www.excelsoftware.com/index.html
http://www.qucis.queensu.ca/Software-Engineering/
http://www.worldwidemart.com/mattw/
http://www.objectime.on.ca/
http://www.advancedsw.com/
http://www.ide.com/index.html
http://www.ilogix.com/
http://www.rational.com/

	Abstract
	2 The Elevator Example
	References

